#extension GL_ARB_bindless_texture : require #extension GL_KHR_shader_subgroup_ballot : enable #extension GL_KHR_shader_subgroup_vote : enable #include "camera.glsl" #include "draw_cmds_data.glsl" // Keep in sync with cpu #define MAX_POINT_LIGHTS 8 #define PI 3.1415926535897932384626433832795 #define CSM_SPLITS 4 layout(location = 16, bindless_sampler) uniform sampler2DArray shadow_maps; layout(location = 17, bindless_sampler) uniform samplerCubeArray cube_shadow_maps; layout(location = 22, bindless_sampler) uniform sampler2D brdfLut; // Input, output blocks VERTEX_EXPORT VertexData { vec3 vPos; vec2 uv; mat3 vTBN; vec3 wPos; vec3 vUp; vec3 wNormal; vec3 vNormal; } VertexOut; VERTEX_EXPORT flat uint DrawID; float random(vec4 seed4) { float dot_product = dot(seed4, vec4(12.9898,78.233,45.164,94.673)); return fract(sin(dot_product) * 43758.5453); } #if VERTEX_SHADER layout(location = 0) in vec3 aPos; layout(location = 1) in vec3 aNormal; layout(location = 2) in vec2 aUV; layout(location = 3) in vec3 aTangent; void main() { DrawID = gl_BaseInstance + gl_InstanceID; mat4 model = draw_data[DrawID].transform; mat4 viewModel = view * model; vec4 vPos = viewModel * vec4(aPos.xyz, 1.0); gl_Position = projection * vPos; VertexOut.vUp = normalize(mat3(viewModel) * vec3(0.0, 1.0, 0.0)); VertexOut.vPos = vPos.xyz / vPos.w; VertexOut.uv = aUV; vec3 aBitangent = cross(aTangent, aNormal); vec3 T = normalize(vec3(viewModel * vec4(aTangent, 0.0))); vec3 B = normalize(vec3(viewModel * vec4(aBitangent, 0.0))); vec3 N = normalize(vec3(viewModel * vec4(aNormal, 0.0))); VertexOut.vTBN = mat3(T, B, N); VertexOut.wPos = (model * vec4(aPos.xyz, 1.0)).xyz; VertexOut.wNormal = normalize(model * vec4(aNormal, 0.0)).xyz; VertexOut.vNormal = normalize(mat3(viewModel) * aNormal).xyz; } #endif // VERTEX_SHADER #if FRAGMENT_SHADER #include "material.glsl" // Types struct Light { vec4 vPos; vec4 color; mat4 view_mat; // for directional lights contains view projection matrices for each split // TODO: compress this somehow mat4[4] view_proj_mats; // x, y = near, far for point lights // z = shadow map index // w = csm split count for directional lights vec4 params; vec4 csm_split_points; // TODO: Maybe increase to 8, though it's probably too many }; layout(std430, binding = 1) readonly buffer Lights { uint lights_count; Light lights[]; }; out vec4 FragColor; int getShadowMapIndex(int lightIdx) { return int(lights[lightIdx].params.z); } int getCSMSplitCount(int lightIdx) { return clamp(int(lights[lightIdx].params.w), 0, 4); } int getCSMSplit(int lightIdx, float depth) { // int totalSplits = getCSMSplitCount(lightIdx); for (int i = 0; i < CSM_SPLITS; i++) { if (depth >= lights[lightIdx].csm_split_points[i]) { return i; } } return CSM_SPLITS - 1; } vec3 schlickFresnel(int matIdx, float NDotV) { vec3 f0 = mix(vec3(0.04), getAlbedo(matIdx).rgb, getMetallic(matIdx)); return f0 + (1.0 - f0) * pow(1.0 - NDotV, 5.0); } vec3 schlickFresnelRoughness(int matIdx, float NDotV) { vec3 f0 = mix(vec3(0.04), getAlbedo(matIdx).rgb, getMetallic(matIdx)); return f0 + (max(vec3(1.0 - getRoughness(matIdx)), f0) - f0) * pow(1.0 - NDotV, 5.0); } const float eps = 0.0001; float geomSmith(int matIdx, float DotVal) { float k = ((getRoughness(matIdx) + 1.0) * (getRoughness(matIdx) + 1.0)) / 8.0; float denom = DotVal * (1 - k) + k; return DotVal / denom; } float ggxDistribution(int matIdx, float NDotH) { float a = getRoughness(matIdx) * getRoughness(matIdx); float alpha2 = a * a; float NDotH2 = NDotH * NDotH; float nom = alpha2; float denom = (NDotH2 * (alpha2 - 1.0) + 1.0); denom = PI * denom * denom; return nom / denom; } float lightAttenuation(bool point, float dist, float radius) { float d = max(dist - radius, 0) * (point ? 1.0 : 0.0); float denom = d/radius + 1; float att = 1 / (denom * denom); // TODO: cutoff att = max(att, 0); return att; } vec2 poissonDisk[4] = vec2[]( vec2( -0.94201624, -0.39906216 ), vec2( 0.94558609, -0.76890725 ), vec2( -0.094184101, -0.92938870 ), vec2( 0.34495938, 0.29387760 ) ); const vec3 csm_split_colors[4] = vec3[]( vec3(0f, 1f, 0.17f), vec3(1f, 0.2f, 0.6f), vec3(0.17f, 0.78f, 1f), vec3(0.91f, 0.93f, 0.64f) ); float map(float value, float min1, float max1, float min2, float max2) { return min2 + (value - min1) * (max2 - min2) / (max1 - min1); } float linestep(float min, float max, float v) { return clamp((v - min) / (max - min), 0, 1); } float ReduceLightBleeding(float p_max, float amount) { return linestep(amount, 1, p_max); } float g_min_variance = 0.00001; float ChebyshevUpperBound(vec2 moments, float t) { // // One-tailed inequality valid if t > Moments.x float p = t <= moments.x ? 1.0 : 0.0; // // Compute variance. float variance = moments.y - (moments.x * moments.x); // // Compute probabilistic upper bound. variance = max(variance, g_min_variance); float d = t - moments.x; float p_max = variance / (variance + d * d); return max(p, ReduceLightBleeding(p_max, 0.6)); } float weight(float t, float log2radius, float gamma) { return exp(-gamma*pow(log2radius-t,2.0f)); } vec2 sampleDirectShadowBlurred(vec3 uv, float radius, float gamma) { vec2 pix = vec2(0); float norm = 0; // weighted integration over mipmap levels for(float i = 0; i < 10; i += 0.5) { float k = weight(i, log2(radius), gamma); pix += k*textureLod(shadow_maps, uv, i).xy; norm += k; } // nomalize, and a bit of brigtness hacking return pix/norm; } vec3 microfacetModel(int matIdx, int light_idx, vec3 P, vec3 N) { // Light light = lights[light_idx]; vec3 diffuseBrdf = vec3(0); // metallic if (getMetallic(matIdx) < 1.0) { diffuseBrdf = getAlbedo(matIdx).rgb / PI; } // 0 - means directional, 1 - means point light bool point = subgroupAll(lights[light_idx].vPos.w == 1); vec3 lightI = lights[light_idx].color.rgb; vec3 L = mix(-lights[light_idx].vPos.xyz, lights[light_idx].vPos.xyz - P, lights[light_idx].vPos.w); vec3 V = normalize(-P); vec3 H = normalize(V + L); float NDotH = max(dot(N, H), 0.0); float NDotL = max(dot(N, L), 0.0); float NDotV = max(dot(N, V), 0.0); float normal_offset_scale = clamp(1 - NDotL, 0, 1); normal_offset_scale *= 10; // constant int shadow_map_idx = subgroupBroadcastFirst(getShadowMapIndex(light_idx)); float constant_bias = 0.003; float shadow_mult = 1; vec4 shadow_offset = vec4(VertexOut.wNormal * normal_offset_scale, 0); if (point) { float dist = max(length(L), eps); L /= dist; float lightRadius = max(lights[light_idx].color.a, eps); float att = lightAttenuation( point, dist, lightRadius ); lightI *= att; vec2 shadow_map_texel_size = 1.0 / vec2(textureSize(cube_shadow_maps, 0)); shadow_offset *= shadow_map_texel_size.x; vec3 shadow_dir = (lights[light_idx].view_mat * vec4(VertexOut.wPos, 1.0)).xyz; float world_depth = length(shadow_dir.xyz); shadow_dir = normalize((lights[light_idx].view_mat * (vec4(VertexOut.wPos, 1.0) + shadow_offset)).xyz); float mapped_depth = map(world_depth, lights[light_idx].params.x, lights[light_idx].params.y, 0, 1); vec4 texcoord; texcoord.xyz = shadow_dir; texcoord.w = float(light_idx); float sum = 0; // sum += texture(cube_shadow_maps, vec4(normalize(texcoord.xyz), texcoord.w), mapped_depth - constant_bias); // for (float y = -1.5; y <= 1.5; y += 1) { // for (float x = -1.5; x <= 1.5; x += 1) { // // sum += texture(cube_shadow_maps, vec4(normalize(texcoord.xyz + vec3(x, y, z) * shadow_map_texel_size.x), texcoord.w), mapped_depth - constant_bias); // } // } shadow_mult = sum / 1.0; } else { int csm_split_idx = subgroupBroadcastFirst(getCSMSplit(light_idx, P.z)); // Visualize CSM splits // mat.albedo = vec4(mix(mat.albedo.rgb, csm_split_colors[csm_split_idx], 0.8), mat.albedo.a); // Directional shadow vec2 shadow_map_texel_size = 1.0 / vec2(textureSize(shadow_maps, 0)); shadow_offset *= shadow_map_texel_size.x; vec4 shadow_pos = lights[light_idx].view_proj_mats[csm_split_idx] * vec4(VertexOut.wPos, 1.0); // shadow_pos.xy = (lights[light_idx].view_proj_mats[csm_split_idx] * (vec4(VertexOut.wPos, 1.0) + shadow_offset)).xy; shadow_pos /= shadow_pos.w; shadow_pos.xy = shadow_pos.xy * 0.5 + 0.5; // [-1, 1] to [0, 1] // shadow_pos.z = min(shadow_pos.z, 1); // shadow_pos.z -= constant_bias; vec4 texcoord; texcoord.xyw = shadow_pos.xyz; // sampler2DArrayShadow strange texcoord mapping texcoord.z = shadow_map_idx + csm_split_idx; // vec4 xs = textureGather(shadow_maps, texcoord.xyz, 0); // vec4 ys = textureGather(shadow_maps, texcoord.xyz, 1); // vec2 moments = vec2( // xs.x + xs.y + xs.z + xs.w, // ys.x + ys.y + ys.z + ys.w // ); // for (int i = 0; i < 4; i++) { // moments += texture(shadow_maps, vec3(texcoord.xy + poissonDisk[i] * shadow_map_texel_size, texcoord.z)).xy; // } // moments /= 4.0; float sum = 0; // moments = sampleDirectShadowBlurred(texcoord.xyz, shadow_pos.z * 10, 0.5); for (float y = -1.5; y <= 1.5; y += 1) { for (float x = -1.5; x <= 1.5; x += 1) { vec2 moments = texture(shadow_maps, vec3(texcoord.xy + vec2(x, y) * shadow_map_texel_size, texcoord.z)).xy; sum += ChebyshevUpperBound(moments, shadow_pos.z); } } shadow_mult = sum / 16.0;; } shadow_mult = clamp(shadow_mult, 0.0, 1.0); vec3 F = schlickFresnelRoughness(matIdx, NDotV); vec3 specBrdf = F * (ggxDistribution(matIdx, NDotH) * geomSmith(matIdx, NDotV) * geomSmith(matIdx, NDotL)); specBrdf /= 4.0 * NDotL * NDotV + 0.0001; vec3 kS = F; vec3 kD = vec3(1.0) - kS; kD *= 1.0 - getMetallic(matIdx); return (kD * diffuseBrdf + specBrdf) * lightI * (NDotL * shadow_mult); } vec3 ibl(int matIdx, vec3 N, vec3 V) { float NDotV = max(dot(N, V), 0.0); vec3 F = schlickFresnelRoughness(matIdx, NDotV); vec3 kS = F; vec3 kD = 1.0 - kS; vec3 R = reflect(-V, N); float ambient_diff = dot(N, VertexOut.vUp) * 0.5 + 0.5; float ambient_spec = dot(R, VertexOut.vUp) * 0.5 + 0.5; // TODO: don't hardcode this vec3 irradiance = vec3(1.0, 0.9764705882352941, 0.9921568627450981) * 79 * ambient_diff * 0.02; vec3 diffuse = irradiance * getAlbedo(matIdx).rgb; vec3 reflectedColor = vec3(0.9, 0.9064705882352941, 0.9921568627450981) * 79 * ambient_spec * 0.02; vec2 envBRDF = textureLod(brdfLut, vec2(NDotV, getRoughness(matIdx)), 0).rg; vec3 specular = reflectedColor * (F * envBRDF.x + envBRDF.y); return kD * diffuse + specular; } void main() { int matIdx = draw_data[DrawID].materialIdx; #if OVERRIDE_COLOR FragColor = getAlbedo(matIdx); #else if (getAlbedo(matIdx).a < 0.5) { FragColor = vec4(0); return; } sampler2D normal_map = materials[matIdx].normal_map; vec2 normal_map_uv_scale = materials[matIdx].normal_map_uv_scale; vec3 N = textureSize(normal_map, 0) == ivec2(0) ? vec3(0.5) : vec3(texture(normal_map, VertexOut.uv * normal_map_uv_scale).xy, 0); N = N * 2.0 - 1.0; N.z = sqrt(clamp(1 - N.x * N.x - N.y * N.y, 0, 1)); N = normalize(N); N = normalize(VertexOut.vTBN * N); // vec3 N = VertexOut.vNormal; vec3 finalColor = vec3(0); int n_lights = clamp(int(lights_count), 0, MAX_POINT_LIGHTS); for (int i = 0; i < MAX_POINT_LIGHTS; i++) { if (i > lights_count) break; finalColor += microfacetModel(matIdx, i, VertexOut.vPos, N); } vec3 V = normalize(-VertexOut.vPos); // ambient finalColor += ibl(matIdx, N, V); finalColor += getEmission(matIdx); FragColor = vec4(finalColor, getAlbedo(matIdx).a); #endif } #endif // FRAGMNET_SHADER