#extension GL_ARB_bindless_texture : enable // Keep in sync with cpu #define MAX_POINT_LIGHTS 8 #define PI 3.1415926535897932384626433832795 // Types struct Light { vec4 vPos; vec4 color; mat4 shadow_vp; // for spot and dir lights vec2 near_far; // for point lights }; // UBOs layout(std140, binding = 0) uniform Matrices { mat4 projection; mat4 view; }; // TODO: rename layout(std140, binding = 1) uniform Lights { Light lights[MAX_POINT_LIGHTS]; uint lights_count; }; // Uniforms layout(location = 1) uniform mat4 model; layout(location = 2) uniform vec3 color; layout(location = 3, bindless_sampler) uniform sampler2D albedo_map; layout(location = 4) uniform vec2 albedo_map_uv_scale = vec2(1); layout(location = 5, bindless_sampler) uniform sampler2D normal_map; layout(location = 6) uniform vec2 normal_map_uv_scale = vec2(1); layout(location = 7) uniform float metallic; layout(location = 8, bindless_sampler) uniform sampler2D metallic_map; layout(location = 9) uniform vec2 metallic_map_uv_scale = vec2(1); layout(location = 10) uniform float roughness; layout(location = 11, bindless_sampler) uniform sampler2D roughness_map; layout(location = 12) uniform vec2 roughness_map_uv_scale = vec2(1); layout(location = 13) uniform vec3 emission; layout(location = 14, bindless_sampler) uniform sampler2D emission_map; layout(location = 15) uniform vec2 emission_map_uv_scale = vec2(1); layout(location = 16, bindless_sampler) uniform sampler2DArrayShadow shadow_maps; layout(location = 17, bindless_sampler) uniform samplerCubeArrayShadow cube_shadow_maps; // Input, output blocks VERTEX_EXPORT VertexData { vec3 vPos; vec2 uv; mat3 vTBN; vec3 wPos; vec3 wNormal; } VertexOut; float random(vec4 seed4) { float dot_product = dot(seed4, vec4(12.9898,78.233,45.164,94.673)); return fract(sin(dot_product) * 43758.5453); } #if VERTEX_SHADER layout(location = 0) in vec3 aPos; layout(location = 1) in vec3 aNormal; layout(location = 2) in vec2 aUV; layout(location = 3) in vec3 aTangent; void main() { vec4 vPos = view * model * vec4(aPos.xyz, 1.0); gl_Position = projection * vPos; VertexOut.vPos = vPos.xyz / vPos.w; // I don't think this is needed, but leaving just in case VertexOut.uv = aUV; vec3 aBitangent = cross(aTangent, aNormal); vec3 T = normalize(vec3(view * model * vec4(aTangent, 0.0))); vec3 B = normalize(vec3(view * model * vec4(aBitangent, 0.0))); vec3 N = normalize(vec3(view * model * vec4(aNormal, 0.0))); VertexOut.vTBN = mat3(T, B, N); vec4 wPos = model * vec4(aPos.xyz, 1.0); VertexOut.wPos = wPos.xyz / wPos.w; VertexOut.wNormal = normalize(model * vec4(aNormal, 0.0)).xyz; } #endif // VERTEX_SHADER #if FRAGMENT_SHADER out vec4 FragColor; struct Material { vec3 albedo; bool metallic; float roughness; vec3 emission; }; Material evalMaterial() { Material result; result.albedo = textureSize(albedo_map, 0) == ivec2(0) ? pow(color, vec3(2.2)) : texture(albedo_map, VertexOut.uv * albedo_map_uv_scale).rgb; float fMetallic = textureSize(metallic_map, 0) == ivec2(0) ? metallic : texture(metallic_map, VertexOut.uv * metallic_map_uv_scale).b; result.metallic = fMetallic > 0.1; result.roughness = max(0.01, textureSize(roughness_map, 0) == ivec2(0) ? roughness : texture(roughness_map, VertexOut.uv * roughness_map_uv_scale).g); result.emission = textureSize(emission_map, 0) == ivec2(0) ? emission : texture(emission_map, VertexOut.uv * emission_map_uv_scale).rgb; return result; } vec3 schlickFresnel(Material mat, float LDotH) { vec3 f0 = vec3(0.04); // dielectric if (mat.metallic) { f0 = mat.albedo; } return f0 + (1 - f0) * pow(1.0 - LDotH, 5); } const float eps = 0.0000001; float geomSmith(Material mat, float DotVal) { float k = (mat.roughness + 1.0) * (mat.roughness + 1.0) / 8.0; float denom = DotVal * (1 - k) + k; return 1.0 / max(denom, eps); } float ggxDistribution(Material mat, float NDotH) { float alpha2 = mat.roughness * mat.roughness * mat.roughness * mat.roughness; float d = (NDotH * NDotH) * (alpha2 - 1) + 1; return alpha2 / max((PI * d * d), eps); } float lightAttenuation(float point, float dist, float radius) { float d = max(dist - radius, 0) * point; float denom = d/radius + 1; float att = 1 / (denom * denom); // TODO: cutoff att = max(att, 0); return att; } vec2 poissonDisk[4] = vec2[]( vec2( -0.94201624, -0.39906216 ), vec2( 0.94558609, -0.76890725 ), vec2( -0.094184101, -0.92938870 ), vec2( 0.34495938, 0.29387760 ) ); float map(float value, float min1, float max1, float min2, float max2) { return min2 + (value - min1) * (max2 - min2) / (max1 - min1); } vec3 microfacetModel(Material mat, int light_idx, Light light, vec3 P, vec3 N) { vec3 diffuseBrdf = vec3(0); // metallic if (!mat.metallic) { diffuseBrdf = mat.albedo; } // 0 - means directional, 1 - means point light float point = light.vPos.w; vec3 lightI = light.color.rgb; float lightRadius = max(light.color.a, eps); vec3 L = mix(-light.vPos.xyz, light.vPos.xyz - P, light.vPos.w); float dist = max(length(L), eps); L /= dist; // TODO: I think this is uniform control flow // so makes sense to use `if` there for directional/point // and don't calculate attenuation for directional at all float att = lightAttenuation( point, dist, lightRadius ); lightI *= att; vec3 V = normalize(-P); vec3 H = normalize(V + L); float NDotH = dot(N, H); float LDotH = dot(L, H); float NDotL = max(dot(N, L), 0); float NDotV = dot(N, V); float normal_offset_scale = clamp(1 - NDotL, 0, 1); normal_offset_scale *= 10; // constant float constant_bias = 0.003; float shadow_mult = 1; vec4 shadow_offset = vec4(VertexOut.wNormal * normal_offset_scale, 0); if (point == 1) { vec2 shadow_map_texel_size = 1.0 / vec2(textureSize(cube_shadow_maps, 0)); shadow_offset *= shadow_map_texel_size.x; vec3 shadow_dir = (light.shadow_vp * vec4(VertexOut.wPos, 1.0)).xyz; float world_depth = length(shadow_dir.xyz); shadow_dir = normalize((light.shadow_vp * (vec4(VertexOut.wPos, 1.0) + shadow_offset)).xyz); float mapped_depth = map(world_depth, light.near_far.x, light.near_far.y, 0, 1); vec4 texcoord; texcoord.xyz = shadow_dir; texcoord.w = float(light_idx); float sum = 0; for (float z = -1; z <= 1; z += 1) { for (float y = -1; y <= 1; y += 1) { for (float x = -1; x <= 1; x += 1) { sum += texture(cube_shadow_maps, vec4(normalize(texcoord.xyz + vec3(x, y, z) * shadow_map_texel_size.x), texcoord.w), mapped_depth - constant_bias); } } } shadow_mult = sum / 27; } else { vec2 shadow_map_texel_size = 1.0 / vec2(textureSize(shadow_maps, 0)); shadow_offset *= shadow_map_texel_size.x; // Directional shadow vec4 shadow_pos = light.shadow_vp * vec4(VertexOut.wPos, 1.0); shadow_pos.xy = (light.shadow_vp * (vec4(VertexOut.wPos, 1.0) + shadow_offset)).xy; shadow_pos /= shadow_pos.w; shadow_pos.xy = shadow_pos.xy * 0.5 + 0.5; // [-1, 1] to [0, 1] shadow_pos.z = min(shadow_pos.z, 1); shadow_pos.z -= constant_bias; vec4 texcoord; texcoord.xyw = shadow_pos.xyz; // sampler2DArrayShadow strange texcoord mapping texcoord.z = 0; // First shadow map float sum = 0; for (float y = -1.5; y <= 1.5; y += 1) { for (float x = -1.5; x <= 1.5; x += 1) { sum += texture(shadow_maps, vec4(texcoord.xy + vec2(x, y) * shadow_map_texel_size, texcoord.zw)); } } shadow_mult = sum / 16.0; } shadow_mult = clamp(shadow_mult, 0, 1); vec3 specBrdf = 0.25 * ggxDistribution(mat, NDotH) * schlickFresnel(mat, LDotH) * geomSmith(mat, NDotL) * geomSmith(mat, NDotV); return (diffuseBrdf + PI * specBrdf) * lightI * NDotL * shadow_mult + mat.emission; } void main() { Material material = evalMaterial(); vec3 N = textureSize(normal_map, 0) == ivec2(0) ? vec3(0.5) : vec3(texture(normal_map, VertexOut.uv * normal_map_uv_scale).xy, 0); N = N * 2.0 - 1.0; N.z = sqrt(clamp(1 - N.x * N.x - N.y * N.y, 0, 1)); N = normalize(N); N = normalize(VertexOut.vTBN * N); vec3 finalColor = vec3(0); for (int i = 0; i < lights_count; i++) { finalColor += microfacetModel(material, i, lights[i], VertexOut.vPos, N); } FragColor = vec4(finalColor, 1.0f); } #endif // FRAGMNET_SHADER