Add XARR implementation

This commit is contained in:
sergeypdev 2025-08-10 01:41:59 +04:00
parent 0226e83010
commit 002122b4d6
4 changed files with 301 additions and 0 deletions

View File

@ -0,0 +1,21 @@
MIT License
Copyright (c) 2025 Sergei Pozniak
Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE.

View File

@ -0,0 +1,5 @@
# XARR Implementation in Odin
Growable dynamic array without reallocation, Arena friendly.
Based on this awesome talk at Better Software Conference: [Andrew Reece Assuming as Much as Possible BSC 2025](https://www.youtube.com/watch?v=i-h95QIGchY&t=2s)

View File

@ -0,0 +1,153 @@
package xarr
import "base:builtin"
import "base:intrinsics"
BASE_CHUNK_SIZE :: uint(64)
BASE_CHUNK_SIZE_LOG2 :: intrinsics.constant_log2(BASE_CHUNK_SIZE)
BASE_CHUNK_SHIFT :: BASE_CHUNK_SIZE_LOG2 - 1
Xarr :: struct($T: typeid) {
len: int,
chunks: [30][^]T,
allocated_chunks_mask: u32,
}
UINT_BITS :: size_of(uint) * 8
msb :: #force_inline proc "contextless" (#any_int idx: uint) -> i8 {
return i8(UINT_BITS - intrinsics.count_leading_zeros(idx)) - 1
}
chunk_by_index :: #force_inline proc "contextless" (#any_int idx: uint) -> (chunk: i8) {
return max(msb(idx) - BASE_CHUNK_SHIFT, 0)
}
chunk_size :: #force_inline proc "contextless" (chunk_idx: i8) -> uint {
return BASE_CHUNK_SIZE << u32(max(chunk_idx - 1, 0))
}
get_chunk_slice :: #force_inline proc "contextless" (a: $T/Xarr($E), chunk_idx: i8) -> []E {
return a.chunks[chunk_idx][:chunk_size(chunk_idx)]
}
capacity_from_allocated_mask :: #force_inline proc(allocated_mask: uint) -> uint {
return(
(allocated_mask >> 1) << BASE_CHUNK_SIZE_LOG2 +
(allocated_mask & 1) << BASE_CHUNK_SIZE_LOG2 \
)
}
capacity :: #force_inline proc(a: $T/Xarr($E)) -> u32 {
allocated_mask := a.allocated_chunks_mask
return capacity_from_allocated_mask(allocated_mask)
}
reserve :: proc(a: $T/^Xarr($E), cap: int, allocator := context.allocator) {
allocated_mask := a.allocated_chunks_mask
current_chunk := msb(allocated_mask)
required_chunks := chunk_by_index(max(cap - 1, 0)) + 1
for i := current_chunk + 1; i < required_chunks; i += 1 {
chunk_slice := make([]E, chunk_size(i), allocator)
a.chunks[i] = raw_data(chunk_slice)
a.allocated_chunks_mask |= u32(1) << u8(i)
}
}
append :: proc(a: $T/^Xarr($E), elems: ..E, allocator := context.allocator) {
if len(elems) == 0 {
return
}
reserve(a, a.len + len(elems))
set_elems_assume_allocated(a^, elems)
a.len += len(elems)
}
translate_index :: #force_inline proc(
#any_int idx: int,
) -> (
chunk_idx: i8,
idx_within_chunk: uint,
) {
assert(idx >= 0)
chunk_idx = chunk_by_index(idx)
idx_within_chunk = uint(idx) & (chunk_size(chunk_idx) - 1)
return
}
@(private = "file")
set_elems_assume_allocated :: proc(a: $T/Xarr($E), elems: []E) {
for &e, i in elems {
idx := a.len + i
chunk_idx, idx_within_chunk := translate_index(idx)
assert(a.chunks[chunk_idx] != nil)
a.chunks[chunk_idx][idx_within_chunk] = e
}
}
set :: proc(a: $T/Xarr($E), #any_int idx: int, val: E) {
assert(idx >= 0 && idx < a.len)
chunk_idx, idx_within_chunk := translate_index(idx)
return get_chunk_slice(a, chunk_idx)[idx_within_chunk]
}
get :: proc(a: $T/Xarr($E), #any_int idx: int) -> E {
assert(idx >= 0 && idx < a.len)
chunk_idx, idx_within_chunk := translate_index(idx)
return get_chunk_slice(a, chunk_idx)[idx_within_chunk]
}
get_ptr :: proc(a: $T/Xarr($E), #any_int idx: int) -> ^E {
assert(idx >= 0 && idx < a.len)
chunk_idx, idx_within_chunk := translate_index(idx)
return &get_chunk_slice(a, chunk_idx)[idx_within_chunk]
}
unordered_remove :: proc(a: $T/^Xarr($E), #any_int idx: int) {
assert(idx >= 0 && idx < a.len)
get_ptr(a^, idx)^ = get(a^, a.len - 1)
a.len -= 1
}
clear :: proc "contextless" (a: $T/^Xarr($E)) {
a.len = 0
}
delete :: proc(a: $T/^Xarr($E), allocator := context.allocator) {
for i in 0 ..< len(a.chunks) {
builtin.delete(get_chunk_slice(a^, i8(i)), allocator)
}
a^ = Xarr(E){}
}
Iterator :: struct($E: typeid) {
xarr: ^Xarr(E),
idx: int,
}
iterator :: proc(a: $T/^Xarr($E), start_idx := 0) -> Iterator(E) {
return Iterator(E){xarr = a, idx = start_idx}
}
iterator_next :: proc(it: ^Iterator($E)) -> (e: ^E, idx: int, ok: bool) {
if it.idx >= it.xarr.len {
return nil, it.idx, false
}
e = get_ptr(it.xarr^, it.idx)
idx = it.idx
ok = true
it.idx += 1
return
}

View File

@ -0,0 +1,122 @@
package xarr
import "core:testing"
@(test)
test_msb :: proc(t: ^testing.T) {
testing.expect_value(t, msb(0), -1)
testing.expect_value(t, msb(1), 0)
testing.expect_value(t, msb(2), 1)
testing.expect_value(t, msb(3), 1)
testing.expect_value(t, msb(4), 2)
testing.expect_value(t, msb(5), 2)
testing.expect_value(t, msb(6), 2)
testing.expect_value(t, msb(7), 2)
testing.expect_value(t, msb(8), 3)
testing.expect_value(t, msb(16), 4)
testing.expect_value(t, msb(64), 6)
}
@(test)
test_chunk_sizes :: proc(t: ^testing.T) {
testing.expect_value(t, chunk_size(0), BASE_CHUNK_SIZE)
testing.expect_value(t, chunk_size(1), BASE_CHUNK_SIZE)
testing.expect_value(t, chunk_size(2), BASE_CHUNK_SIZE * 2)
testing.expect_value(t, chunk_size(3), BASE_CHUNK_SIZE * 4)
testing.expect_value(t, chunk_size(4), BASE_CHUNK_SIZE * 8)
}
@(test)
test_capacity_from_mask :: proc(t: ^testing.T) {
testing.expect_value(t, capacity_from_allocated_mask(0b1), chunk_size(0))
testing.expect_value(t, capacity_from_allocated_mask(0b11), chunk_size(0) + chunk_size(1))
testing.expect_value(
t,
capacity_from_allocated_mask(0b111),
chunk_size(0) + chunk_size(1) + chunk_size(2),
)
testing.expect_value(
t,
capacity_from_allocated_mask(0b1111),
chunk_size(0) + chunk_size(1) + chunk_size(2) + chunk_size(3),
)
testing.expect_value(
t,
capacity_from_allocated_mask(0b11111),
chunk_size(0) + chunk_size(1) + chunk_size(2) + chunk_size(3) + chunk_size(4),
)
}
@(test)
test_indexing :: proc(t: ^testing.T) {
chunk, idx := translate_index(0)
testing.expect_value(t, chunk, 0)
testing.expect_value(t, idx, 0)
chunk, idx = translate_index(BASE_CHUNK_SIZE - 1)
testing.expect_value(t, chunk, 0)
testing.expect_value(t, idx, BASE_CHUNK_SIZE - 1)
chunk, idx = translate_index(BASE_CHUNK_SIZE)
testing.expect_value(t, chunk, 1)
testing.expect_value(t, idx, 0)
chunk, idx = translate_index(BASE_CHUNK_SIZE * 3 - 1)
testing.expect_value(t, chunk, 2)
testing.expect_value(t, idx, BASE_CHUNK_SIZE - 1)
chunk, idx = translate_index(BASE_CHUNK_SIZE * 5)
testing.expect_value(t, chunk, 3)
testing.expect_value(t, idx, BASE_CHUNK_SIZE)
}
@(test)
test_basic :: proc(t: ^testing.T) {
a: Xarr(int)
defer delete(&a)
NUM :: 10000
RUNS :: 4
for _ in 0 ..< RUNS {
defer clear(&a)
for i in 0 ..< NUM {
append(&a, i)
}
testing.expect_value(t, a.len, NUM)
for i in 0 ..< NUM {
testing.expect_value(t, get(a, i), i)
}
}
}
@(test)
test_remove :: proc(t: ^testing.T) {
a: Xarr(int)
defer delete(&a)
append(&a, 1, 2, 3, 4)
unordered_remove(&a, 1)
testing.expect_value(t, a.len, 3)
testing.expect_value(t, get(a, 0), 1)
testing.expect_value(t, get(a, 1), 4)
testing.expect_value(t, get(a, 2), 3)
}
@(test)
test_iterator :: proc(t: ^testing.T) {
a: Xarr(int)
defer delete(&a)
append(&a, 0, 1, 2, 3, 4)
it := iterator(&a)
for e, i in iterator_next(&it) {
testing.expect_value(t, e^, i)
}
}