Wheel friction working

This commit is contained in:
sergeypdev 2025-01-05 03:16:44 +04:00
parent 5c0dd2f9f5
commit 0687ff4858
7 changed files with 539 additions and 348 deletions

153
game/editor.odin Normal file
View File

@ -0,0 +1,153 @@
package game
import lg "core:math/linalg"
import rl "vendor:raylib"
update_free_look_camera :: proc(es: ^Editor_State) {
input: rl.Vector2
if rl.IsKeyDown(.UP) || rl.IsKeyDown(.W) {
input.y -= 1
}
if rl.IsKeyDown(.DOWN) || rl.IsKeyDown(.S) {
input.y += 1
}
if rl.IsKeyDown(.LEFT) || rl.IsKeyDown(.A) {
input.x -= 1
}
if rl.IsKeyDown(.RIGHT) || rl.IsKeyDown(.D) {
input.x += 1
}
should_capture_mouse := rl.IsMouseButtonDown(.RIGHT)
if es.mouse_captured != should_capture_mouse {
if should_capture_mouse {
rl.DisableCursor()
} else {
rl.EnableCursor()
}
}
es.mouse_captured = should_capture_mouse
if es.mouse_captured {
get_runtime_world().camera_yaw_pitch += rl.GetMouseDelta().yx * -1 * 0.001
}
get_runtime_world().camera_speed += rl.GetMouseWheelMove() * 0.01
get_runtime_world().camera_speed = lg.clamp(get_runtime_world().camera_speed, 0.01, 10)
rotation_matrix := camera_rotation_matrix()
forward := -rotation_matrix[2]
right := lg.cross(rl.Vector3{0, 1, 0}, forward)
input = lg.normalize0(input)
get_world().player_pos +=
(input.x * right + input.y * forward) * get_runtime_world().camera_speed
}
update_editor :: proc(es: ^Editor_State) {
update_free_look_camera(es)
switch es.track_edit_state {
case .Select:
{
if rl.IsKeyPressed(.F) {
add_track_spline_point()
}
if is_point_selected() {
if rl.IsKeyPressed(.X) {
if len(es.point_selection) <= 1 {
for i in es.point_selection {
ordered_remove(&get_world().track.points, i)
}
} else {
#reverse for _, i in get_world().track.points {
if i in es.point_selection {
ordered_remove(&get_world().track.points, i)
}
}
}
clear(&es.point_selection)
}
if rl.IsKeyPressed(.G) {
es.track_edit_state = .Move
es.move_axis = .None
es.total_movement_world = {}
// es.initial_point_pos = g_mem.track.points[es.selected_track_point]
}
}
}
case .Move:
{
if rl.IsKeyPressed(.ESCAPE) {
es.track_edit_state = .Select
// g_mem.track.points[es.selected_track_point] = es.initial_point_pos
break
}
if (rl.IsMouseButtonPressed(.LEFT)) {
es.track_edit_state = .Select
break
}
if !es.mouse_captured {
// Blender style movement
if rl.IsKeyDown(.LEFT_SHIFT) {
if rl.IsKeyPressed(.X) {
es.move_axis = .YZ
}
if rl.IsKeyPressed(.Y) {
es.move_axis = .XZ
}
if rl.IsKeyPressed(.Z) {
es.move_axis = .XY
}
} else {
if rl.IsKeyPressed(.X) {
es.move_axis = .X
}
if rl.IsKeyPressed(.Y) {
es.move_axis = .Y
}
if rl.IsKeyPressed(.Z) {
es.move_axis = .Z
}
}
// log.debugf("Move axis %v", es.move_axis)
camera := game_camera_3d()
mouse_delta := rl.GetMouseDelta() * 0.05
view_rotation := lg.transpose(rl.GetCameraMatrix(camera))
view_rotation[3].xyz = 0
view_proj := view_rotation * rl.MatrixOrtho(-1, 1, 1, -1, -1, 1)
axes_buf: [2]rl.Vector3
colors_buf: [2]rl.Color
axes, _ := get_movement_axes(es.move_axis, &axes_buf, &colors_buf)
movement_world: rl.Vector3
for axis in axes {
axis_screen := (rl.Vector4{axis.x, axis.y, axis.z, 1} * view_proj).xy
axis_screen = lg.normalize0(axis_screen)
movement_screen := lg.dot(axis_screen, mouse_delta) * axis_screen
movement_world +=
(rl.Vector4{movement_screen.x, movement_screen.y, 0, 1} * rl.MatrixInvert(view_proj)).xyz
}
for k in es.point_selection {
get_world().track.points[k] += movement_world
}
es.total_movement_world += movement_world
}
}
}
}

View File

@ -31,34 +31,46 @@ Track :: struct {
} }
World :: struct { World :: struct {
player_pos: rl.Vector3,
track: Track, track: Track,
physics_scene: physics.Scene, physics_scene: physics.Scene,
} }
destroy_world :: proc(world: ^World) { destroy_world :: proc(world: ^World) {
delete(world.track.points) delete(world.track.points)
physics.destroy_physics_scene(&world.physics_scene) physics.destroy_physics_scene(&world.physics_scene)
} }
Runtime_World :: struct {
world: World,
pause: bool,
solver_state: physics.Solver_State,
car_com: rl.Vector3,
car_handle: physics.Body_Handle,
camera_yaw_pitch: rl.Vector2,
camera_speed: f32,
camera: rl.Camera3D,
}
destroy_runtime_world :: proc(runtime_world: ^Runtime_World) {
destroy_world(&runtime_world.world)
physics.destroy_solver_state(&runtime_world.solver_state)
}
Car :: struct { Car :: struct {
pos: rl.Vector3, pos: rl.Vector3,
} }
SOLVER_CONFIG :: physics.Solver_Config { SOLVER_CONFIG :: physics.Solver_Config {
timestep = 1.0 / 120, timestep = 1.0 / 120,
gravity = rl.Vector3{0, -9.8, 0}, gravity = rl.Vector3{0, -9.8, 0},
substreps_minus_one = 8 - 1,
} }
Game_Memory :: struct { Game_Memory :: struct {
assetman: assets.Asset_Manager, assetman: assets.Asset_Manager,
player_pos: rl.Vector3, runtime_world: Runtime_World,
camera_yaw_pitch: rl.Vector2, es: Editor_State,
camera_speed: f32, editor: bool,
camera: rl.Camera3D,
solver_state: physics.Solver_State,
car_handle: physics.Body_Handle,
es: Editor_State,
editor: bool,
} }
Track_Edit_State :: enum { Track_Edit_State :: enum {
@ -90,19 +102,34 @@ Editor_State :: struct {
g_mem: ^Game_Memory g_mem: ^Game_Memory
get_runtime_world :: proc() -> ^Runtime_World {
return &g_mem.runtime_world
}
get_world :: proc() -> ^World { get_world :: proc() -> ^World {
return &g_mem.es.world return g_mem.editor ? &g_mem.es.world : &g_mem.runtime_world.world
}
get_editor_state :: proc() -> ^Editor_State {
return &g_mem.es
} }
game_camera :: proc() -> rl.Camera2D { game_camera :: proc() -> rl.Camera2D {
w := f32(rl.GetScreenWidth()) w := f32(rl.GetScreenWidth())
h := f32(rl.GetScreenHeight()) h := f32(rl.GetScreenHeight())
return {zoom = h / PIXEL_WINDOW_HEIGHT, target = g_mem.player_pos.xy, offset = {w / 2, h / 2}} return {
zoom = h / PIXEL_WINDOW_HEIGHT,
target = get_world().player_pos.xy,
offset = {w / 2, h / 2},
}
} }
camera_rotation_matrix :: proc() -> matrix[3, 3]f32 { camera_rotation_matrix :: proc() -> matrix[3, 3]f32 {
return linalg.matrix3_from_euler_angles_xy(g_mem.camera_yaw_pitch.x, g_mem.camera_yaw_pitch.y) return linalg.matrix3_from_euler_angles_xy(
get_runtime_world().camera_yaw_pitch.x,
get_runtime_world().camera_yaw_pitch.y,
)
} }
camera_forward_vec :: proc() -> rl.Vector3 { camera_forward_vec :: proc() -> rl.Vector3 {
@ -113,64 +140,21 @@ camera_forward_vec :: proc() -> rl.Vector3 {
game_camera_3d :: proc() -> rl.Camera3D { game_camera_3d :: proc() -> rl.Camera3D {
if g_mem.editor { if g_mem.editor {
return { return {
position = g_mem.player_pos, position = get_world().player_pos,
up = {0, 1, 0}, up = {0, 1, 0},
fovy = 60, fovy = 60,
target = g_mem.player_pos + camera_forward_vec(), target = get_world().player_pos + camera_forward_vec(),
projection = .PERSPECTIVE, projection = .PERSPECTIVE,
} }
} }
return g_mem.camera return get_runtime_world().camera
} }
ui_camera :: proc() -> rl.Camera2D { ui_camera :: proc() -> rl.Camera2D {
return {zoom = f32(rl.GetScreenHeight()) / PIXEL_WINDOW_HEIGHT} return {zoom = f32(rl.GetScreenHeight()) / PIXEL_WINDOW_HEIGHT}
} }
update_free_look_camera :: proc() {
es := &g_mem.es
input: rl.Vector2
if rl.IsKeyDown(.UP) || rl.IsKeyDown(.W) {
input.y -= 1
}
if rl.IsKeyDown(.DOWN) || rl.IsKeyDown(.S) {
input.y += 1
}
if rl.IsKeyDown(.LEFT) || rl.IsKeyDown(.A) {
input.x -= 1
}
if rl.IsKeyDown(.RIGHT) || rl.IsKeyDown(.D) {
input.x += 1
}
should_capture_mouse := rl.IsMouseButtonDown(.RIGHT)
if es.mouse_captured != should_capture_mouse {
if should_capture_mouse {
rl.DisableCursor()
} else {
rl.EnableCursor()
}
}
es.mouse_captured = should_capture_mouse
if es.mouse_captured {
g_mem.camera_yaw_pitch += rl.GetMouseDelta().yx * -1 * 0.001
}
g_mem.camera_speed += rl.GetMouseWheelMove() * 0.01
g_mem.camera_speed = linalg.clamp(g_mem.camera_speed, 0.01, 10)
rotation_matrix := camera_rotation_matrix()
forward := -rotation_matrix[2]
right := linalg.cross(rl.Vector3{0, 1, 0}, forward)
input = linalg.normalize0(input)
g_mem.player_pos += (input.x * right + input.y * forward) * g_mem.camera_speed
}
select_track_point :: proc(index: int) { select_track_point :: proc(index: int) {
clear(&g_mem.es.point_selection) clear(&g_mem.es.point_selection)
g_mem.es.point_selection[index] = true g_mem.es.point_selection[index] = true
@ -183,7 +167,7 @@ is_point_selected :: proc() -> bool {
add_track_spline_point :: proc() { add_track_spline_point :: proc() {
forward := camera_rotation_matrix()[2] forward := camera_rotation_matrix()[2]
append(&get_world().track.points, g_mem.player_pos + forward) append(&get_world().track.points, get_world().player_pos + forward)
select_track_point(len(&get_world().track.points) - 1) select_track_point(len(&get_world().track.points) - 1)
} }
@ -233,135 +217,20 @@ get_movement_axes :: proc(
return out_axes[0:0], out_colors[0:0] return out_axes[0:0], out_colors[0:0]
} }
update_editor :: proc() { update_runtime_world :: proc(runtime_world: ^Runtime_World, dt: f32) {
es := &g_mem.es world := &runtime_world.world
switch es.track_edit_state { if !runtime_world.pause {
case .Select:
{
if rl.IsKeyPressed(.F) {
add_track_spline_point()
}
if is_point_selected() {
if rl.IsKeyPressed(.X) {
if len(es.point_selection) <= 1 {
for i in es.point_selection {
ordered_remove(&get_world().track.points, i)
}
} else {
#reverse for _, i in get_world().track.points {
if i in es.point_selection {
ordered_remove(&get_world().track.points, i)
}
}
}
clear(&es.point_selection)
}
if rl.IsKeyPressed(.G) {
es.track_edit_state = .Move
es.move_axis = .None
es.total_movement_world = {}
// es.initial_point_pos = g_mem.track.points[es.selected_track_point]
}
}
}
case .Move:
{
if rl.IsKeyPressed(.ESCAPE) {
es.track_edit_state = .Select
// g_mem.track.points[es.selected_track_point] = es.initial_point_pos
break
}
if (rl.IsMouseButtonPressed(.LEFT)) {
es.track_edit_state = .Select
break
}
if !es.mouse_captured {
// Blender style movement
if rl.IsKeyDown(.LEFT_SHIFT) {
if rl.IsKeyPressed(.X) {
es.move_axis = .YZ
}
if rl.IsKeyPressed(.Y) {
es.move_axis = .XZ
}
if rl.IsKeyPressed(.Z) {
es.move_axis = .XY
}
} else {
if rl.IsKeyPressed(.X) {
es.move_axis = .X
}
if rl.IsKeyPressed(.Y) {
es.move_axis = .Y
}
if rl.IsKeyPressed(.Z) {
es.move_axis = .Z
}
}
// log.debugf("Move axis %v", es.move_axis)
camera := game_camera_3d()
mouse_delta := rl.GetMouseDelta() * 0.05
view_rotation := linalg.transpose(rl.GetCameraMatrix(camera))
view_rotation[3].xyz = 0
view_proj := view_rotation * rl.MatrixOrtho(-1, 1, 1, -1, -1, 1)
axes_buf: [2]rl.Vector3
colors_buf: [2]rl.Color
axes, _ := get_movement_axes(es.move_axis, &axes_buf, &colors_buf)
movement_world: rl.Vector3
for axis in axes {
axis_screen := (rl.Vector4{axis.x, axis.y, axis.z, 1} * view_proj).xy
axis_screen = linalg.normalize0(axis_screen)
movement_screen := linalg.dot(axis_screen, mouse_delta) * axis_screen
movement_world +=
(rl.Vector4{movement_screen.x, movement_screen.y, 0, 1} * rl.MatrixInvert(view_proj)).xyz
}
for k in es.point_selection {
get_world().track.points[k] += movement_world
}
es.total_movement_world += movement_world
}
}
}
}
update :: proc() {
if rl.IsKeyPressed(.TAB) {
g_mem.editor = !g_mem.editor
// if g_mem.editor {
// rl.EnableCursor()
// } else {
// rl.DisableCursor()
// }
}
dt := rl.GetFrameTime()
if !g_mem.editor {
car_model := assets.get_model(&g_mem.assetman, "assets/toyota_corolla_ae86_trueno.glb") car_model := assets.get_model(&g_mem.assetman, "assets/toyota_corolla_ae86_trueno.glb")
car_bounds := rl.GetModelBoundingBox(car_model) car_bounds := rl.GetModelBoundingBox(car_model)
runtime_world.car_com = (car_bounds.min + car_bounds.max) / 2
g_mem.car_handle = physics.immediate_body( runtime_world.car_handle = physics.immediate_body(
&get_world().physics_scene, &world.physics_scene,
&g_mem.solver_state, &runtime_world.solver_state,
#hash("car", "fnv32a"), #hash("car", "fnv32a"),
physics.Body_Config { physics.Body_Config {
initial_pos = {0, 1, 0}, initial_pos = {0, 2, 0},
initial_rot = linalg.QUATERNIONF32_IDENTITY, initial_rot = linalg.QUATERNIONF32_IDENTITY,
initial_ang_vel = {0, 0, 0}, initial_ang_vel = {0, 0, 0},
mass = 100, mass = 100,
@ -369,81 +238,133 @@ update :: proc() {
}, },
) )
g_mem.camera.up = rl.Vector3{0, 1, 0} runtime_world.camera.up = rl.Vector3{0, 1, 0}
g_mem.camera.fovy = 60 runtime_world.camera.fovy = 60
g_mem.camera.projection = .PERSPECTIVE runtime_world.camera.projection = .PERSPECTIVE
g_mem.camera.target = physics.get_body(&get_world().physics_scene, g_mem.car_handle).x runtime_world.camera.target =
if g_mem.camera.position == {} { physics.get_body(&world.physics_scene, runtime_world.car_handle).x
g_mem.camera.position = g_mem.camera.target - rl.Vector3{10, 0, 10} if runtime_world.camera.position == {} {
runtime_world.camera.position = runtime_world.camera.target - rl.Vector3{10, 0, 10}
} }
// 1.6 is a good value // 1.6 is a good value
wheel_extent_x := f32(2.0) wheel_extent_x := f32(2)
rest := f32(0.9) wheel_y := f32(-0.5)
suspension_stiffness := f32(10000) rest := f32(1)
suspension_stiffness := f32(2000)
compliance := 1.0 / suspension_stiffness compliance := 1.0 / suspension_stiffness
damping := f32(0.1)
radius := f32(0.6)
physics.immediate_suspension_constraint( wheel_fl := physics.immediate_suspension_constraint(
&get_world().physics_scene, &world.physics_scene,
&g_mem.solver_state, &runtime_world.solver_state,
#hash("FL", "fnv32a"), #hash("FL", "fnv32a"),
{ {
rel_pos = {-wheel_extent_x, 0, 2.5}, rel_pos = {-wheel_extent_x, wheel_y, 2.9},
rel_dir = {0, -1, 0}, rel_dir = {0, -1, 0},
radius = radius,
rest = rest, rest = rest,
compliance = compliance, compliance = compliance,
body = g_mem.car_handle, damping = damping,
body = runtime_world.car_handle,
}, },
) )
physics.immediate_suspension_constraint( wheel_fr := physics.immediate_suspension_constraint(
&get_world().physics_scene, &world.physics_scene,
&g_mem.solver_state, &runtime_world.solver_state,
#hash("FR", "fnv32a"), #hash("FR", "fnv32a"),
{ {
rel_pos = {wheel_extent_x, 0, 2.5}, rel_pos = {wheel_extent_x, wheel_y, 2.9},
rel_dir = {0, -1, 0}, rel_dir = {0, -1, 0},
radius = radius,
rest = rest, rest = rest,
compliance = compliance, compliance = compliance,
body = g_mem.car_handle, damping = damping,
body = runtime_world.car_handle,
}, },
) )
physics.immediate_suspension_constraint( wheel_rl := physics.immediate_suspension_constraint(
&get_world().physics_scene, &world.physics_scene,
&g_mem.solver_state, &runtime_world.solver_state,
#hash("RL", "fnv32a"), #hash("RL", "fnv32a"),
{ {
rel_pos = {-wheel_extent_x, 0, -3}, rel_pos = {-wheel_extent_x, wheel_y, -2.6},
rel_dir = {0, -1, 0}, rel_dir = {0, -1, 0},
radius = radius,
rest = rest, rest = rest,
compliance = compliance, compliance = compliance,
body = g_mem.car_handle, damping = damping,
body = runtime_world.car_handle,
}, },
) )
physics.immediate_suspension_constraint( wheel_rr := physics.immediate_suspension_constraint(
&get_world().physics_scene, &world.physics_scene,
&g_mem.solver_state, &runtime_world.solver_state,
#hash("RR", "fnv32a"), #hash("RR", "fnv32a"),
{ {
rel_pos = {wheel_extent_x, 0, -3}, rel_pos = {wheel_extent_x, wheel_y, -2.6},
rel_dir = {0, -1, 0}, rel_dir = {0, -1, 0},
radius = radius,
rest = rest, rest = rest,
compliance = compliance, compliance = compliance,
body = g_mem.car_handle, damping = damping,
body = runtime_world.car_handle,
}, },
) )
} else { drive_wheels := []physics.Suspension_Constraint_Handle{wheel_rl, wheel_rr}
update_free_look_camera() turn_wheels := []physics.Suspension_Constraint_Handle{wheel_fl, wheel_fr}
update_editor() DRIVE_IMPULSE :: 1
BRAKE_IMPULSE :: 2
TURN_ANGLE :: -f32(10) * math.RAD_PER_DEG
for wheel_handle in drive_wheels {
wheel := physics.get_suspension_constraint(&world.physics_scene, wheel_handle)
wheel.drive_impulse = 0
wheel.brake_impulse = 0
if rl.IsKeyDown(.W) {
wheel.drive_impulse = DRIVE_IMPULSE
}
if rl.IsKeyDown(.S) {
wheel.brake_impulse = BRAKE_IMPULSE
}
}
for wheel_handle in turn_wheels {
wheel := physics.get_suspension_constraint(&world.physics_scene, wheel_handle)
wheel.turn_angle = 0
if (rl.IsKeyDown(.A)) {
wheel.turn_angle += -TURN_ANGLE
}
if (rl.IsKeyDown(.D)) {
wheel.turn_angle += TURN_ANGLE
}
}
physics.simulate(&world.physics_scene, &runtime_world.solver_state, SOLVER_CONFIG, dt)
}
}
update :: proc() {
if rl.IsKeyPressed(.TAB) {
g_mem.editor = !g_mem.editor
} }
physics.simulate( dt := rl.GetFrameTime()
&g_mem.es.world.physics_scene,
&g_mem.solver_state, if g_mem.editor {
SOLVER_CONFIG, update_editor(get_editor_state())
g_mem.editor ? 0 : dt, } else {
) update_runtime_world(get_runtime_world(), dt)
}
} }
catmull_rom_coefs :: proc( catmull_rom_coefs :: proc(
@ -479,9 +400,12 @@ draw :: proc() {
defer rl.EndDrawing() defer rl.EndDrawing()
rl.ClearBackground(rl.BLACK) rl.ClearBackground(rl.BLACK)
runtime_world := get_runtime_world()
world := get_world()
camera := game_camera_3d() camera := game_camera_3d()
points := &get_world().track.points points := &world.track.points
interpolated_points := calculate_spline_interpolated_points(points[:], context.temp_allocator) interpolated_points := calculate_spline_interpolated_points(points[:], context.temp_allocator)
@ -496,43 +420,17 @@ draw :: proc() {
rl.BeginMode3D(camera) rl.BeginMode3D(camera)
defer rl.EndMode3D() defer rl.EndMode3D()
if collision.hit {
// tangent, bitangent := get_point_frame(interpolated_points, segment_idx)
// rot_matrix: linalg.Matrix3f32
// rot_matrix[0] = bitangent
// rot_matrix[1] = interpolated_points[segment_idx].normal
// rot_matrix[2] = -tangent
// angle, axis := linalg.angle_axis_from_quaternion(
// linalg.quaternion_from_matrix3(rot_matrix),
// )
}
rl.DrawGrid(100, 1) rl.DrawGrid(100, 1)
if !g_mem.editor { if !g_mem.editor {
car_body := physics.get_body(&world.physics_scene, runtime_world.car_handle)
car_body := physics.get_body(&get_world().physics_scene, g_mem.car_handle)
car_matrix := rl.QuaternionToMatrix(car_body.q) car_matrix := rl.QuaternionToMatrix(car_body.q)
car_model.transform = car_matrix car_model.transform = car_matrix
rl.DrawModel(car_model, car_body.x, 1, rl.WHITE) rl.DrawModel(car_model, car_body.x - runtime_world.car_com, 1, rl.WHITE)
} }
physics.draw_debug_scene(&get_world().physics_scene) physics.draw_debug_scene(&world.physics_scene)
// road: rl.Mesh
// defer rl.UnloadMesh(road)
// road_vertices: [dynamic]f32
// road_normals: [dynamic]f32
// road_uvs: [dynamic]f32
// road_indices: [dynamic]u16
// road_vertices.allocator = context.temp_allocator
// road_normals.allocator = context.temp_allocator
// road_uvs.allocator = context.temp_allocator
// road_indices.allocator = context.temp_allocator
{ {
// Debug draw spline road // Debug draw spline road
@ -602,14 +500,8 @@ draw :: proc() {
) )
} }
} else { } else {
car_pos := physics.get_body(&get_world().physics_scene, g_mem.car_handle).x car_pos := physics.get_body(&world.physics_scene, runtime_world.car_handle).x
rl.DrawText( rl.DrawText(fmt.ctprintf("Car Pos: %v", car_pos), 5, 32, 8, rl.ORANGE)
fmt.ctprintf("Car Pos: %v. Mesh count: %v", car_pos, car_model.meshCount),
5,
32,
8,
rl.ORANGE,
)
} }
} }
@ -637,7 +529,7 @@ draw :: proc() {
false, false,
rl.GuiIconName.ICON_TARGET_POINT, rl.GuiIconName.ICON_TARGET_POINT,
)) { )) {
inject_at(&get_world().track.points, 0, new_point_pos) inject_at(&world.track.points, 0, new_point_pos)
log.debugf("add point before 0") log.debugf("add point before 0")
} }
} }
@ -660,7 +552,7 @@ draw :: proc() {
false, false,
rl.GuiIconName.ICON_TARGET_POINT, rl.GuiIconName.ICON_TARGET_POINT,
)) { )) {
inject_at(&get_world().track.points, points_len - 1 + 1, new_point_pos) inject_at(&world.track.points, points_len - 1 + 1, new_point_pos)
log.debugf("add point before 0") log.debugf("add point before 0")
} }
} }
@ -674,12 +566,12 @@ draw :: proc() {
middle_pos := sample_spline(points[:], t) middle_pos := sample_spline(points[:], t)
if (spline_handle(middle_pos, camera, false, rl.GuiIconName.ICON_TARGET_POINT)) { if (spline_handle(middle_pos, camera, false, rl.GuiIconName.ICON_TARGET_POINT)) {
inject_at(&get_world().track.points, i + 1, middle_pos) inject_at(&world.track.points, i + 1, middle_pos)
log.debugf("add point after %d", i) log.debugf("add point after %d", i)
} }
} }
if spline_handle(get_world().track.points[i], camera, es.point_selection[i]) { if spline_handle(world.track.points[i], camera, es.point_selection[i]) {
if !rl.IsKeyDown(.LEFT_CONTROL) { if !rl.IsKeyDown(.LEFT_CONTROL) {
clear(&g_mem.es.point_selection) clear(&g_mem.es.point_selection)
} }
@ -784,9 +676,9 @@ game_init :: proc() {
@(export) @(export)
game_shutdown :: proc() { game_shutdown :: proc() {
assets.shutdown(&g_mem.assetman) assets.shutdown(&g_mem.assetman)
destroy_world(get_world()) destroy_world(&g_mem.es.world)
delete(g_mem.es.point_selection) delete(g_mem.es.point_selection)
physics.destroy_solver_state(&g_mem.solver_state) destroy_runtime_world(&g_mem.runtime_world)
free(g_mem) free(g_mem)
} }

View File

@ -1,10 +1,12 @@
package physics package physics
import "core:log" import "core:log"
import "core:math"
import lg "core:math/linalg" import lg "core:math/linalg"
import rl "vendor:raylib" import rl "vendor:raylib"
_ :: log _ :: log
_ :: math
draw_debug_scene :: proc(scene: ^Scene) { draw_debug_scene :: proc(scene: ^Scene) {
for &body in scene.bodies { for &body in scene.bodies {
@ -22,20 +24,40 @@ draw_debug_scene :: proc(scene: ^Scene) {
} }
} }
for &constraint in scene.suspension_constraints { for _, i in scene.suspension_constraints {
if constraint.alive { wheel := &scene.suspension_constraints_slice[i]
body := get_body(scene, constraint.body) if wheel.alive {
t := constraint.hit_t > 0 ? constraint.hit_t : constraint.rest body := get_body(scene, wheel.body)
t := wheel.hit_t > 0 ? wheel.hit_t : wheel.rest
pos := body.x pos := body.x
rot := body.q rot := body.q
pos += lg.quaternion_mul_vector3(rot, constraint.rel_pos) pos += lg.quaternion_mul_vector3(rot, wheel.rel_pos)
dir := lg.quaternion_mul_vector3(rot, constraint.rel_dir) dir := lg.quaternion_mul_vector3(rot, wheel.rel_dir)
rl.DrawLine3D(pos, pos + dir * t, rl.ORANGE) rl.DrawLine3D(pos, pos + dir * t, rl.ORANGE)
if constraint.hit { rel_wheel_pos := wheel_get_rel_wheel_pos(body, wheel)
rl.DrawSphereWires(constraint.hit_point, 0.1, 4, 4, rl.RED) wheel_pos := body_local_to_world(body, rel_wheel_pos)
right := wheel_get_right_vec(body, wheel)
rl.DrawCylinderWiresEx(
wheel_pos - right * 0.1,
wheel_pos + right * 0.1,
wheel.radius,
wheel.radius,
16,
rl.RED,
)
rl.DrawLine3D(
pos + t * dir,
pos + t * dir + wheel.applied_impulse.x * right * 10,
rl.RED,
)
if wheel.hit {
rl.DrawSphereWires(wheel.hit_point, 0.1, 4, 4, rl.RED)
} }
} }
} }

View File

@ -19,8 +19,49 @@ body_local_to_world :: #force_inline proc(body: Body_Ptr, pos: rl.Vector3) -> rl
return body.x + lg.quaternion_mul_vector3(body.q, pos) return body.x + lg.quaternion_mul_vector3(body.q, pos)
} }
body_local_to_world_vec :: #force_inline proc(body: Body_Ptr, vec: rl.Vector3) -> rl.Vector3 {
return lg.quaternion_mul_vector3(body.q, vec)
}
body_world_to_local :: #force_inline proc(body: Body_Ptr, pos: rl.Vector3) -> rl.Vector3 { body_world_to_local :: #force_inline proc(body: Body_Ptr, pos: rl.Vector3) -> rl.Vector3 {
// TODO: maybe store that
inv_q := lg.quaternion_inverse(body.q) inv_q := lg.quaternion_inverse(body.q)
return lg.quaternion_mul_vector3(inv_q, pos - body.x) return lg.quaternion_mul_vector3(inv_q, pos - body.x)
} }
body_world_to_local_vec :: #force_inline proc(body: Body_Ptr, vec: rl.Vector3) -> rl.Vector3 {
inv_q := lg.quaternion_inverse(body.q)
return lg.quaternion_mul_vector3(inv_q, vec)
}
body_angular_velocity_at_local_point :: #force_inline proc(
body: Body_Ptr,
rel_pos: rl.Vector3,
) -> rl.Vector3 {
return lg.cross(body.w, rel_pos)
}
body_velocity_at_local_point :: #force_inline proc(
body: Body_Ptr,
rel_pos: rl.Vector3,
) -> rl.Vector3 {
return body.v + body_angular_velocity_at_local_point(body, rel_pos)
}
wheel_get_rel_wheel_pos :: #force_inline proc(
body: Body_Ptr,
wheel: Suspension_Constraint_Ptr,
) -> rl.Vector3 {
t := wheel.hit_t > 0 ? wheel.hit_t : wheel.rest
return wheel.rel_pos + wheel.rel_dir * (t - wheel.radius)
}
wheel_get_right_vec :: #force_inline proc(
body: Body_Ptr,
wheel: Suspension_Constraint_Ptr,
) -> rl.Vector3 {
local_right := lg.quaternion_mul_vector3(
lg.quaternion_angle_axis(wheel.turn_angle, rl.Vector3{0, 1, 0}),
rl.Vector3{1, 0, 0},
)
return body_local_to_world_vec(body, local_right)
}

View File

@ -13,12 +13,15 @@ Body_Config :: struct {
inertia_tensor: rl.Vector3, inertia_tensor: rl.Vector3,
} }
// TODO: rename to wheel
Suspension_Constraint_Config :: struct { Suspension_Constraint_Config :: struct {
rel_pos: rl.Vector3, rel_pos: rl.Vector3,
rel_dir: rl.Vector3, rel_dir: rl.Vector3,
body: Body_Handle, body: Body_Handle,
rest: f32, rest: f32,
compliance: f32, compliance: f32,
damping: f32,
radius: f32,
} }
initialize_body_from_config :: proc(body: ^Body, config: Body_Config) { initialize_body_from_config :: proc(body: ^Body, config: Body_Config) {
@ -44,6 +47,8 @@ update_suspension_constraint_from_config :: proc(
constraint.body = config.body constraint.body = config.body
constraint.rest = config.rest constraint.rest = config.rest
constraint.compliance = config.compliance constraint.compliance = config.compliance
constraint.damping = config.damping
constraint.radius = config.radius
} }
immediate_body :: proc( immediate_body :: proc(

View File

@ -33,26 +33,34 @@ Body :: struct {
} }
Suspension_Constraint :: struct { Suspension_Constraint :: struct {
alive: bool, alive: bool,
// Pos relative to the body // Pos relative to the body
rel_pos: rl.Vector3, rel_pos: rl.Vector3,
// Dir relative to the body // Dir relative to the body
rel_dir: rl.Vector3, rel_dir: rl.Vector3,
// Handle of the rigid body // Handle of the rigid body
body: Body_Handle, body: Body_Handle,
// Wheel radius
radius: f32,
// Rest distance // Rest distance
rest: f32, rest: f32,
// Inverse stiffness // Inverse stiffness
compliance: f32, compliance: f32,
// How much to damp velocity of the spring
damping: f32,
// Runtime state // Runtime state
hit: bool, hit: bool,
hit_point: rl.Vector3, hit_point: rl.Vector3,
// rel_hit_point = rel_pos + rel_dir * hit_t // rel_hit_point = rel_pos + rel_dir * hit_t
hit_t: f32, hit_t: f32,
turn_angle: f32,
drive_impulse: f32,
brake_impulse: f32,
applied_impulse: rl.Vector3,
// Free list // Free list
next_plus_one: i32, next_plus_one: i32,
} }
// Index plus one, so handle 0 maps to invalid body // Index plus one, so handle 0 maps to invalid body
@ -98,7 +106,7 @@ add_body :: proc(scene: ^Scene, body: Body) -> Body_Handle {
body_copy.alive = true body_copy.alive = true
body_copy.next_plus_one = 0 body_copy.next_plus_one = 0
if scene.first_free_body_plus_one > 1 { if scene.first_free_body_plus_one > 0 {
index := scene.first_free_body_plus_one index := scene.first_free_body_plus_one
new_body := get_body(scene, Body_Handle(index)) new_body := get_body(scene, Body_Handle(index))
next_plus_one := new_body.next_plus_one next_plus_one := new_body.next_plus_one

View File

@ -1,16 +1,19 @@
package physics package physics
import "collision" import "collision"
import "core:fmt"
import "core:math" import "core:math"
import lg "core:math/linalg" import lg "core:math/linalg"
import rl "vendor:raylib" import rl "vendor:raylib"
_ :: math _ :: math
_ :: fmt
Solver_Config :: struct { Solver_Config :: struct {
// Will automatically do fixed timestep // Will automatically do fixed timestep
timestep: f32, timestep: f32,
gravity: rl.Vector3, gravity: rl.Vector3,
substreps_minus_one: i32,
} }
Solver_State :: struct { Solver_State :: struct {
@ -25,16 +28,17 @@ Solver_State :: struct {
immediate_suspension_constraints: map[u32]Immedate_State(Suspension_Constraint_Handle), immediate_suspension_constraints: map[u32]Immedate_State(Suspension_Constraint_Handle),
} }
destroy_solver_state :: proc(state: ^Solver_State) {
delete(state.immedate_bodies)
delete(state.immediate_suspension_constraints)
}
Immedate_State :: struct($T: typeid) { Immedate_State :: struct($T: typeid) {
handle: T, handle: T,
// When was this referenced last time (frame number) // When was this referenced last time (frame number)
last_ref: u32, last_ref: u32,
} }
destroy_solver_state :: proc(state: ^Solver_State) {
delete(state.immedate_bodies)
}
// Outer simulation loop for fixed timestepping // Outer simulation loop for fixed timestepping
simulate :: proc(scene: ^Scene, state: ^Solver_State, config: Solver_Config, dt: f32) { simulate :: proc(scene: ^Scene, state: ^Solver_State, config: Solver_Config, dt: f32) {
assert(config.timestep > 0) assert(config.timestep > 0)
@ -62,81 +66,147 @@ Body_Sim_State :: struct {
} }
simulate_step :: proc(scene: ^Scene, config: Solver_Config) { simulate_step :: proc(scene: ^Scene, config: Solver_Config) {
body_states := make_soa(#soa[]Body_Sim_State, len(scene.bodies), context.temp_allocator) body_states := make([]Body_Sim_State, len(scene.bodies), context.temp_allocator)
dt := config.timestep substeps := config.substreps_minus_one + 1
dt := config.timestep / f32(substeps)
inv_dt := 1.0 / dt inv_dt := 1.0 / dt
// Integrate positions and rotations for _ in 0 ..< substeps {
for &body, i in scene.bodies { // Integrate positions and rotations
if body.alive { for &body, i in scene.bodies {
body_states[i].prev_x = body.x if body.alive {
body.v += dt * config.gravity body_states[i].prev_x = body.x
body.x += dt * body.v body.v += dt * config.gravity
body.x += dt * body.v
body_states[i].prev_q = body.q body_states[i].prev_q = body.q
// TODO: Probably can do it using built in quaternion math but I have no idea how it works // TODO: Probably can do it using built in quaternion math but I have no idea how it works
// NOTE: figure out how this works https://fgiesen.wordpress.com/2012/08/24/quaternion-differentiation/ // NOTE: figure out how this works https://fgiesen.wordpress.com/2012/08/24/quaternion-differentiation/
q := body.q q := body.q
delta_rot := quaternion(x = body.w.x, y = body.w.y, z = body.w.z, w = 0) delta_rot := quaternion(x = body.w.x, y = body.w.y, z = body.w.z, w = 0)
delta_rot = delta_rot * q delta_rot = delta_rot * q
q.x += 0.5 * dt * delta_rot.x q.x += 0.5 * dt * delta_rot.x
q.y += 0.5 * dt * delta_rot.y q.y += 0.5 * dt * delta_rot.y
q.z += 0.5 * dt * delta_rot.z q.z += 0.5 * dt * delta_rot.z
q.w += 0.5 * dt * delta_rot.w q.w += 0.5 * dt * delta_rot.w
q = lg.normalize0(q) q = lg.normalize0(q)
body.q = q body.q = q
}
} }
}
for &v in scene.suspension_constraints { for &v in scene.suspension_constraints {
if v.alive { if v.alive {
body := get_body(scene, v.body) body := get_body(scene, v.body)
q := body.q q := body.q
pos := body_local_to_world(body, v.rel_pos) pos := body_local_to_world(body, v.rel_pos)
dir := lg.quaternion_mul_vector3(q, v.rel_dir) dir := lg.quaternion_mul_vector3(q, v.rel_dir)
pos2 := pos + dir * v.rest pos2 := pos + dir * v.rest
v.hit_t, v.hit_point, v.hit = collision.intersect_segment_plane( v.hit_t, v.hit_point, v.hit = collision.intersect_segment_plane(
{pos, pos2}, {pos, pos2},
collision.plane_from_point_normal({}, collision.Vec3{0, 1, 0}), collision.plane_from_point_normal({}, collision.Vec3{0, 1, 0}),
)
if v.hit {
corr := v.hit_point - pos
distance := lg.length(corr)
corr = corr / distance if distance > 0 else 0
apply_constraint_correction_unilateral(
dt,
body,
v.compliance,
error = distance - v.rest,
error_gradient = corr,
pos = pos,
other_combined_inv_mass = 0,
) )
if v.hit {
corr := v.hit_point - pos
distance := lg.length(corr)
corr = corr / distance if distance > 0 else 0
apply_constraint_correction_unilateral(
dt,
body,
v.compliance,
error = distance - v.rest,
error_gradient = corr,
pos = pos,
other_combined_inv_mass = 0,
)
}
}
}
solve_velocities(scene, body_states, inv_dt)
// Solve suspension velocity
for _, i in scene.suspension_constraints {
v := &scene.suspension_constraints_slice[i]
if v.alive {
body := get_body(scene, v.body)
if body.alive && v.hit {
wheel_world_pos := body_local_to_world(body, v.rel_pos)
body_state := body_states[i32(v.body) - 1]
// Spring damping
{
dir := body_local_to_world_vec(body, v.rel_dir)
vel_3d := body_velocity_at_local_point(body, v.rel_pos)
vel := lg.dot(vel_3d, dir)
damp_delta := -vel * v.damping * dt * dir
apply_correction(body, damp_delta, wheel_world_pos)
body_solve_velocity(body, body_state, inv_dt)
}
// Drive forces
{
total_impulse := v.drive_impulse - v.brake_impulse
forward := body_local_to_world_vec(body, rl.Vector3{0, 0, 1})
corr := total_impulse * forward * dt
apply_correction(body, corr, wheel_world_pos)
body_solve_velocity(body, body_state, inv_dt)
}
// Lateral friction
{
local_contact_pos := v.hit_point - body.x
vel_contact := body_velocity_at_local_point(body, local_contact_pos)
right := wheel_get_right_vec(body, v)
lateral_vel := lg.dot(right, vel_contact)
friction := f32(0.7)
impulse := -lateral_vel * friction
corr := right * impulse * dt
v.applied_impulse.x = impulse
apply_correction(body, corr, v.hit_point)
body_solve_velocity(body, body_state, inv_dt)
}
}
} }
} }
} }
}
solve_velocities :: proc(scene: ^Scene, body_states: []Body_Sim_State, inv_dt: f32) {
// Compute new linear and angular velocities // Compute new linear and angular velocities
for &body, i in scene.bodies { for _, i in scene.bodies_slice {
body := &scene.bodies_slice[i]
if body.alive { if body.alive {
body.v = (body.x - body_states[i].prev_x) * inv_dt body_solve_velocity(body, body_states[i], inv_dt)
delta_q := body.q * lg.quaternion_inverse(body_states[i].prev_q)
body.w = rl.Vector3{delta_q.x, delta_q.y, delta_q.z} * 2.0 * inv_dt
if delta_q.w < 0 {
body.w = -body.w
}
} }
} }
} }
body_solve_velocity :: #force_inline proc(body: Body_Ptr, state: Body_Sim_State, inv_dt: f32) {
body.v = (body.x - state.prev_x) * inv_dt
delta_q := body.q * lg.quaternion_inverse(state.prev_q)
body.w = rl.Vector3{delta_q.x, delta_q.y, delta_q.z} * 2.0 * inv_dt
if delta_q.w < 0 {
body.w = -body.w
}
}
apply_constraint_correction_unilateral :: proc( apply_constraint_correction_unilateral :: proc(
dt: f32, dt: f32,
body: Body_Ptr, body: Body_Ptr,