Almost working bvh

This commit is contained in:
sergeypdev 2025-01-06 03:40:40 +04:00
parent 0687ff4858
commit 493f311ad0
8 changed files with 1158 additions and 482 deletions

View File

@ -1,3 +1,3 @@
#!/usr/bin/env bash #!/usr/bin/env bash
odin build main_release -out:game_release.bin -strict-style -vet -no-bounds-check -o:speed odin build main_release -collection:common=./common -collection:game=./game -out:game_release.bin -strict-style -vet -no-bounds-check -o:speed -debug

View File

@ -2,6 +2,9 @@ package assets
import "core:c" import "core:c"
import "core:log" import "core:log"
import "core:math"
import lg "core:math/linalg"
import "game:physics/bvh"
import rl "vendor:raylib" import rl "vendor:raylib"
Loaded_Texture :: struct { Loaded_Texture :: struct {
@ -14,9 +17,25 @@ Loaded_Model :: struct {
modtime: c.long, modtime: c.long,
} }
Loaded_BVH :: struct {
// AABB of all bvhs
aabb: bvh.AABB,
// BVH for each mesh in a model
bvhs: []bvh.BVH,
modtime: c.long,
}
destroy_loaded_bvh :: proc(loaded_bvh: Loaded_BVH) {
for &mesh_bvh in loaded_bvh.bvhs {
bvh.destroy_bvh(&mesh_bvh)
}
delete(loaded_bvh.bvhs)
}
Asset_Manager :: struct { Asset_Manager :: struct {
textures: map[cstring]Loaded_Texture, textures: map[cstring]Loaded_Texture,
models: map[cstring]Loaded_Model, models: map[cstring]Loaded_Model,
bvhs: map[cstring]Loaded_BVH,
} }
get_texture :: proc(assetman: ^Asset_Manager, path: cstring) -> rl.Texture2D { get_texture :: proc(assetman: ^Asset_Manager, path: cstring) -> rl.Texture2D {
@ -45,12 +64,22 @@ get_texture :: proc(assetman: ^Asset_Manager, path: cstring) -> rl.Texture2D {
} }
} }
get_model :: proc(assetman: ^Asset_Manager, path: cstring) -> rl.Model { get_model_ex :: proc(
modtime := rl.GetFileModTime(path) assetman: ^Asset_Manager,
path: cstring,
ref_modtime: c.long = 0, // will check reload status using reference load time. When 0 reloaded will be true only if this call triggered reload
) -> (
model: rl.Model,
modtime: c.long,
reloaded: bool,
) {
new_modtime := rl.GetFileModTime(path)
existing, ok := assetman.models[path] existing, ok := assetman.models[path]
if ok && existing.modtime == modtime { if ok && existing.modtime == new_modtime {
return existing.model return existing.model,
existing.modtime,
ref_modtime == 0 ? false : existing.modtime == ref_modtime
} }
if ok { if ok {
@ -63,12 +92,66 @@ get_model :: proc(assetman: ^Asset_Manager, path: cstring) -> rl.Model {
if rl.IsModelValid(loaded) { if rl.IsModelValid(loaded) {
assetman.models[path] = { assetman.models[path] = {
model = loaded, model = loaded,
modtime = new_modtime,
}
return loaded, new_modtime, true
} else {
return rl.Model{}, 0, true
}
}
get_model :: proc(assetman: ^Asset_Manager, path: cstring) -> rl.Model {
model, _, _ := get_model_ex(assetman, path)
return model
}
null_bvhs: []bvh.BVH
get_bvh :: proc(assetman: ^Asset_Manager, path: cstring) -> Loaded_BVH {
loaded_bvh, ok := assetman.bvhs[path]
model, modtime, reloaded := get_model_ex(assetman, path, loaded_bvh.modtime)
should_recreate := reloaded || !ok || true
if ok && should_recreate {
destroy_loaded_bvh(loaded_bvh)
delete_key(&assetman.bvhs, path)
}
if should_recreate {
new_bvhs := make([]bvh.BVH, model.meshCount)
outer_aabb := bvh.AABB {
min = math.F32_MAX,
max = math.F32_MIN,
}
for i in 0 ..< model.meshCount {
mesh := model.meshes[i]
vertices := (cast([^]rl.Vector3)mesh.vertices)[:mesh.vertexCount]
indices := mesh.indices[:mesh.triangleCount * 3]
mesh_bvh := bvh.build_bvh_from_mesh(
{vertices = vertices, indices = indices},
context.allocator,
)
root_aabb := mesh_bvh.bvh.nodes[0].aabb
outer_aabb.min = lg.min(outer_aabb.min, root_aabb.min)
outer_aabb.max = lg.max(outer_aabb.max, root_aabb.max)
new_bvhs[i] = mesh_bvh.bvh
}
assetman.bvhs[path] = Loaded_BVH {
aabb = outer_aabb,
bvhs = new_bvhs,
modtime = modtime, modtime = modtime,
} }
return loaded
} else {
return rl.Model{}
} }
return assetman.bvhs[path]
} }
shutdown :: proc(assetman: ^Asset_Manager) { shutdown :: proc(assetman: ^Asset_Manager) {
@ -78,6 +161,10 @@ shutdown :: proc(assetman: ^Asset_Manager) {
for _, model in assetman.models { for _, model in assetman.models {
rl.UnloadModel(model.model) rl.UnloadModel(model.model)
} }
for _, loaded_bvh in assetman.bvhs {
destroy_loaded_bvh(loaded_bvh)
}
delete(assetman.textures) delete(assetman.textures)
delete(assetman.models) delete(assetman.models)
delete(assetman.bvhs)
} }

View File

@ -21,6 +21,7 @@ import "core:log"
import "core:math" import "core:math"
import "core:math/linalg" import "core:math/linalg"
import "game:physics" import "game:physics"
import "game:physics/bvh"
import rl "vendor:raylib" import rl "vendor:raylib"
import "vendor:raylib/rlgl" import "vendor:raylib/rlgl"
@ -71,6 +72,7 @@ Game_Memory :: struct {
runtime_world: Runtime_World, runtime_world: Runtime_World,
es: Editor_State, es: Editor_State,
editor: bool, editor: bool,
preview_bvh: int,
} }
Track_Edit_State :: enum { Track_Edit_State :: enum {
@ -360,6 +362,13 @@ update :: proc() {
dt := rl.GetFrameTime() dt := rl.GetFrameTime()
if rl.IsKeyReleased(.LEFT_BRACKET) {
g_mem.preview_bvh -= 1
}
if rl.IsKeyReleased(.RIGHT_BRACKET) {
g_mem.preview_bvh += 1
}
if g_mem.editor { if g_mem.editor {
update_editor(get_editor_state()) update_editor(get_editor_state())
} else { } else {
@ -409,25 +418,68 @@ draw :: proc() {
interpolated_points := calculate_spline_interpolated_points(points[:], context.temp_allocator) interpolated_points := calculate_spline_interpolated_points(points[:], context.temp_allocator)
collision, segment_idx := raycast_spline_tube( // collision, segment_idx := raycast_spline_tube(
interpolated_points, // interpolated_points,
rl.GetScreenToWorldRay(rl.GetMousePosition(), camera), // rl.GetScreenToWorldRay(rl.GetMousePosition(), camera),
) // )
car_body := physics.get_body(&world.physics_scene, runtime_world.car_handle)
car_model := assets.get_model(&g_mem.assetman, "assets/toyota_corolla_ae86_trueno.glb") car_model := assets.get_model(&g_mem.assetman, "assets/toyota_corolla_ae86_trueno.glb")
mesh_col: bvh.Collision
hit_mesh_idx := -1
rl_ray := rl.GetScreenToWorldRay(rl.GetMousePosition(), camera)
ray := bvh.Ray {
origin = rl_ray.position,
dir = rl_ray.direction,
}
{ {
rl.BeginMode3D(camera) rl.BeginMode3D(camera)
defer rl.EndMode3D() defer rl.EndMode3D()
rl.DrawGrid(100, 1) rl.DrawGrid(100, 1)
{
mesh_bvh := assets.get_bvh(&g_mem.assetman, "assets/toyota_corolla_ae86_trueno.glb")
for &blas, i in mesh_bvh.bvhs {
mesh := car_model.meshes[i]
if i == -1 {
bvh.debug_draw_bvh_bounds(
&blas,
bvh.bvh_mesh_from_rl_mesh(mesh),
0,
g_mem.preview_bvh,
)
}
vertices := (cast([^]rl.Vector3)mesh.vertices)[:mesh.vertexCount]
indices := mesh.indices[:mesh.triangleCount * 3]
if bvh.traverse_bvh_ray_mesh(
&blas,
bvh.Mesh{vertices = vertices, indices = indices},
ray,
&mesh_col,
) {
hit_mesh_idx = i
}
}
if mesh_col.hit {
rl.DrawSphereWires(ray.origin + ray.dir * mesh_col.t, 1, 8, 8, rl.RED)
}
}
if !g_mem.editor { if !g_mem.editor {
car_body := physics.get_body(&world.physics_scene, runtime_world.car_handle)
car_matrix := rl.QuaternionToMatrix(car_body.q) car_matrix := rl.QuaternionToMatrix(car_body.q)
car_model.transform = car_matrix car_model.transform = car_matrix
rl.DrawModel(car_model, car_body.x - runtime_world.car_com, 1, rl.WHITE) rl.DrawModel(car_model, car_body.x - runtime_world.car_com, 1, rl.WHITE)
} else {
// rl.DrawModel(car_model, 0, 1, rl.WHITE)
} }
physics.draw_debug_scene(&world.physics_scene) physics.draw_debug_scene(&world.physics_scene)
@ -471,10 +523,6 @@ draw :: proc() {
} }
} }
} }
if collision.hit {
rl.DrawSphereWires(collision.point, 1, 8, 8, rl.RED)
}
} }
{ {
@ -484,9 +532,19 @@ draw :: proc() {
if g_mem.editor { if g_mem.editor {
rl.DrawText("Editor", 5, 5, 8, rl.ORANGE) rl.DrawText("Editor", 5, 5, 8, rl.ORANGE)
if collision.hit { rl.DrawText(
rl.DrawText(fmt.ctprintf("Segment: %v", segment_idx), 5, 32, 8, rl.ORANGE) fmt.ctprintf(
} "mesh: %v, tri: %v, bary: %v, idx: %v",
hit_mesh_idx,
mesh_col.prim,
mesh_col.bary,
g_mem.preview_bvh,
),
5,
32,
8,
rl.ORANGE,
)
switch g_mem.es.track_edit_state { switch g_mem.es.track_edit_state {
case .Select: case .Select:

382
game/physics/bvh/bvh.odin Normal file
View File

@ -0,0 +1,382 @@
package bvh
import "../collision"
import "base:runtime"
import "core:container/queue"
import "core:log"
import "core:math"
import lg "core:math/linalg"
import "core:mem"
import rl "vendor:raylib"
_ :: log
_ :: rl
_ :: lg
Vec3 :: [3]f32
AABB :: struct {
min, max: Vec3,
}
// Helper struct to avoid passing verts/indices separately
Mesh :: struct {
vertices: []Vec3,
indices: []u16,
}
BVH :: struct {
nodes: []Node,
// Triangle IDs. first_index = indices[primitive * 3]
primitives: []u16,
nodes_used: i32,
}
destroy_bvh :: proc(bvh: ^BVH) {
delete(bvh.nodes)
delete(bvh.primitives)
}
// Helper struct to store mesh data together with its bvh for convenience
// You don't have to use it
Mesh_BVH :: struct {
bvh: BVH,
mesh: Mesh,
}
Node :: struct {
aabb: AABB,
// Index of the left child, right child is left_child + 1
child_or_prim_start: i32,
prim_len: i32,
}
// uvw
Bary :: [3]f32
is_leaf_node :: #force_inline proc(node: Node) -> bool {
return node.prim_len > 0
}
#assert(size_of(Node) == 32)
build_bvh_from_mesh :: proc(mesh: Mesh, allocator := context.allocator) -> (mesh_bvh: Mesh_BVH) {
vertices, indices := mesh.vertices, mesh.indices
assert(len(indices) % 3 == 0)
bvh := &mesh_bvh.bvh
num_triangles := len(indices) / 3
// Caller owned, allocator might be temp_allocator so do this before checkpoint below, otherwise we the result accidentally
bvh.nodes, _ = mem.make_aligned([]Node, num_triangles * 2 - 1, size_of(Node), allocator)
bvh.primitives = make([]u16, num_triangles, allocator)
// Clean up after ourselves
temp := runtime.default_temp_allocator_temp_begin()
defer runtime.default_temp_allocator_temp_end(temp)
// Temp stuff
centroids := make([]Vec3, num_triangles, context.temp_allocator)
aabbs := make([]AABB, num_triangles, context.temp_allocator)
// Calculate centroids and aabbs
for i in 0 ..< num_triangles {
i1, i2, i3 := indices[i * 3], indices[i * 3 + 1], indices[i * 3 + 2]
v1, v2, v3 := vertices[i1], vertices[i2], vertices[i3]
centroids[i] = (v1 + v2 + v3) * 0.33333333333
aabbs[i].min = Vec3{min(v1.x, v2.x, v3.x), min(v1.y, v2.y, v3.y), min(v1.z, v2.z, v3.z)}
aabbs[i].max = Vec3{max(v1.x, v2.x, v3.x), max(v1.y, v2.y, v3.y), max(v1.z, v2.z, v3.z)}
size := aabbs[i].max - aabbs[i].min
assert(size.x >= 0)
assert(size.y >= 0)
assert(size.z >= 0)
bvh.primitives[i] = u16(i)
}
bvh.nodes_used = 1 // root
root := &bvh.nodes[0]
root.child_or_prim_start = 0
root.prim_len = i32(num_triangles)
update_node_bounds(bvh, 0, aabbs)
subdivide(bvh, 0, centroids, aabbs)
return
}
/// Useful for a top level accel structure
build_bvh_from_aabbs :: proc(aabbs: []AABB, allocator := context.allocator) -> (bvh: BVH) {
bvh.nodes, _ = mem.make_aligned([]Node, len(aabbs) * 2 - 1, size_of(Node), allocator)
bvh.primitives = make([]u16, len(aabbs), allocator)
temp := runtime.default_temp_allocator_temp_begin()
defer runtime.default_temp_allocator_temp_end(temp)
// Temp stuff
centroids := make([]Vec3, len(aabbs), context.temp_allocator)
// Calculate centroids
for i in 0 ..< len(aabbs) {
centroids[i] = (aabbs[i].max + aabbs[i].min) * 0.5
bvh.primitives[i] = u16(i)
}
bvh.nodes_used = 1
root := &bvh.nodes[0]
root.prim_len = i32(len(aabbs))
update_node_bounds(&bvh, 0, aabbs)
subdivide(&bvh, 0, centroids, aabbs)
return
}
update_node_bounds :: proc(bvh: ^BVH, node_idx: i32, prim_aabbs: []AABB) {
node := &bvh.nodes[node_idx]
node.aabb.min = math.F32_MAX
node.aabb.max = math.F32_MIN
for i in node.child_or_prim_start ..< node.child_or_prim_start + node.prim_len {
prim_aabb := prim_aabbs[bvh.primitives[i]]
node.aabb.min.x = min(node.aabb.min.x, prim_aabb.min.x)
node.aabb.min.y = min(node.aabb.min.y, prim_aabb.min.y)
node.aabb.min.z = min(node.aabb.min.z, prim_aabb.min.z)
node.aabb.max.x = max(node.aabb.max.x, prim_aabb.max.x)
node.aabb.max.y = max(node.aabb.max.y, prim_aabb.max.y)
node.aabb.max.z = max(node.aabb.max.z, prim_aabb.max.z)
}
size := node.aabb.max - node.aabb.min
assert(size.x >= 0)
assert(size.y >= 0)
assert(size.z >= 0)
}
subdivide :: proc(bvh: ^BVH, node_idx: i32, centroids: []Vec3, aabbs: []AABB) {
node := &bvh.nodes[node_idx]
if node.prim_len <= 2 {
return
}
size := node.aabb.max - node.aabb.min
// Split along longest axis
largest_side := size.x
split_axis := 0
if size.y > largest_side {
split_axis = 1
largest_side = size.y
}
if size.z > largest_side {
split_axis = 2
}
split_pos := node.aabb.min[split_axis] + size[split_axis] * 0.5
// Partition
i := node.child_or_prim_start
j := i + node.prim_len - 1
for i <= j {
prim_i := bvh.primitives[i]
prim_j := bvh.primitives[j]
if centroids[prim_i][split_axis] < split_pos {
i += 1
} else {
bvh.primitives[i] = prim_j
bvh.primitives[j] = prim_i
j -= 1
}
}
left_count := i - node.child_or_prim_start
if left_count == 0 || left_count == node.prim_len {
return
}
left_child := bvh.nodes_used
right_child := bvh.nodes_used + 1
bvh.nodes_used += 2
prim_start := node.child_or_prim_start
node.child_or_prim_start = left_child
bvh.nodes[left_child] = {}
bvh.nodes[right_child] = {}
bvh.nodes[left_child].child_or_prim_start = prim_start
bvh.nodes[left_child].prim_len = left_count
bvh.nodes[right_child].child_or_prim_start = i
bvh.nodes[right_child].prim_len = node.prim_len - left_count
node.prim_len = 0
update_node_bounds(bvh, left_child, aabbs)
update_node_bounds(bvh, right_child, aabbs)
subdivide(bvh, left_child, centroids, aabbs)
subdivide(bvh, right_child, centroids, aabbs)
}
Ray :: struct {
origin, dir: Vec3,
dir_inv: Vec3,
}
Collision :: struct {
hit: bool,
t: f32,
// which primitive we hit
prim: u16,
// Barycentric coords of the hit triangle
bary: Bary,
}
traverse_bvh_ray_mesh :: proc(bvh: ^BVH, mesh: Mesh, ray: Ray, out_collision: ^Collision) -> bool {
ray := ray
ray.dir_inv.x = 1.0 / ray.dir.x
ray.dir_inv.y = 1.0 / ray.dir.y
ray.dir_inv.z = 1.0 / ray.dir.z
if !out_collision.hit {
out_collision.t = math.F32_MAX
}
prev_t := out_collision.t
internal_traverse_bvh_ray_triangles(bvh, mesh, ray, out_collision)
return out_collision.hit && out_collision.t < prev_t
}
internal_traverse_bvh_ray_triangles :: proc(
bvh: ^BVH,
mesh: Mesh,
ray: Ray,
out_collision: ^Collision,
) {
temp := runtime.default_temp_allocator_temp_begin()
defer runtime.default_temp_allocator_temp_end(temp)
nodes_to_process: queue.Queue(i32)
queue.init(&nodes_to_process, queue.DEFAULT_CAPACITY, context.temp_allocator)
queue.push_back(&nodes_to_process, 0)
for queue.len(nodes_to_process) > 0 {
node_idx := queue.pop_front(&nodes_to_process)
assert(node_idx < bvh.nodes_used)
node := &bvh.nodes[node_idx]
if !internal_ray_aabb_test(ray, node.aabb, out_collision.t) {
return
}
rl.DrawBoundingBox(
{min = node.aabb.min, max = node.aabb.max},
debug_int_to_color(node_idx),
)
if is_leaf_node(node^) {
for i in node.child_or_prim_start ..< node.child_or_prim_start + node.prim_len {
internal_ray_tri_test(ray, mesh, bvh.primitives[i], out_collision)
}
} else {
left_node := node.child_or_prim_start
queue.push_back_elems(&nodes_to_process, left_node, left_node + 1)
}
}
}
// https://tavianator.com/2022/ray_box_boundary.html
internal_ray_aabb_test :: proc(ray: Ray, box: AABB, min_t: f32) -> bool {
_, ok := collision.intersect_ray_aabb(ray.origin, ray.dir, collision.Aabb{box.min, box.max})
return ok
// t1 := (box.min[0] - ray.origin[0]) * ray.dir_inv[0]
// t2 := (box.max[0] - ray.origin[0]) * ray.dir_inv[0]
// tmin := min(t1, t2)
// tmax := max(t1, t2)
// for i in 1 ..< 3 {
// t1 = (box.min[i] - ray.origin[i]) * ray.dir_inv[i]
// t2 = (box.max[i] - ray.origin[i]) * ray.dir_inv[i]
// tmin = max(tmin, min(t1, t2))
// tmax = min(tmax, max(t1, t2))
// }
// return tmax > max(tmin, 0.0)
}
// MöllerTrumbore intersection algorithm
// https://jacco.ompf2.com/2022/04/13/how-to-build-a-bvh-part-1-basics/
internal_ray_tri_test :: proc(ray: Ray, mesh: Mesh, tri: u16, col: ^Collision) {
i1, i2, i3 := mesh.indices[tri * 3], mesh.indices[tri * 3 + 1], mesh.indices[tri * 3 + 2]
v1, v2, v3 := mesh.vertices[i1], mesh.vertices[i2], mesh.vertices[i3]
t, _, barycentric, ok := collision.intersect_segment_triangle(
{ray.origin, ray.origin + ray.dir},
{v1, v2, v3},
)
if ok && t < col.t {
col.hit = true
col.t = t
col.prim = tri
col.bary = barycentric
}
// rl.DrawTriangle3D(v1, v2, v3, debug_int_to_color(i32(tri)))
// rl_col := rl.GetRayCollisionTriangle(rl.Ray{ray.origin, ray.dir}, v1, v2, v3)
// if rl_col.hit && rl_col.distance < col.t {
// col.hit = true
// col.t = lg.distance(ray.origin, rl_col.point)
// }
return
//e1, e2 := v2 - v1, v3 - v1
//h := lg.cross(ray.dir, e2)
//a := lg.dot(e1, h)
//// ray parallel to triangle
//if a > -0.0001 || a < 0.0001 {
// return
//}
//f: f32 = 1.0 / a
//s := ray.origin - v1
//u := f * lg.dot(s, h)
//if u < 0 || u > 1 {
// return
//}
//q := lg.cross(s, e1)
//v := f * lg.dot(ray.dir, q)
//if v < 0 || u + v > 1 {
// return
//}
//t := f * lg.dot(e2, q)
//if t > 0.0001 && t < col.t {
// col.hit = true
// col.t = t
// col.prim = tri
// col.bary = Vec3{u, v, 0} // TODO: calc W
//}
}

115
game/physics/bvh/debug.odin Normal file
View File

@ -0,0 +1,115 @@
package bvh
import "base:runtime"
import "core:container/queue"
import "core:fmt"
import "core:log"
import lg "core:math/linalg"
import rl "vendor:raylib"
import "vendor:raylib/rlgl"
_ :: fmt
_ :: log
// Assuming rl.BeginMode3D was called before this
debug_draw_bvh_bounds :: proc(bvh: ^BVH, mesh: Mesh, pos: rl.Vector3, node_index: int) {
old_width := rlgl.GetLineWidth()
rlgl.SetLineWidth(4)
defer rlgl.SetLineWidth(old_width)
temp := runtime.default_temp_allocator_temp_begin()
defer runtime.default_temp_allocator_temp_end(temp)
Traversal :: struct {
node_idx: i32,
should_draw: bool,
}
nodes_to_process: queue.Queue(Traversal)
queue.init(&nodes_to_process, queue.DEFAULT_CAPACITY, context.temp_allocator)
queue.push_back(&nodes_to_process, Traversal{0, node_index == 0})
for queue.len(nodes_to_process) > 0 {
traversal := queue.pop_front(&nodes_to_process)
node_idx := traversal.node_idx
should_draw := traversal.should_draw || node_index == int(node_idx)
node := &bvh.nodes[node_idx]
if should_draw {
rl.DrawBoundingBox(
rl.BoundingBox{node.aabb.min + pos, node.aabb.max + pos},
debug_int_to_color(node_idx + 1),
)
}
if !is_leaf_node(node^) {
left_child := node.child_or_prim_start
queue.push_back_elems(
&nodes_to_process,
Traversal{left_child, should_draw},
Traversal{left_child + 1, should_draw},
)
} else if should_draw {
for i in node.child_or_prim_start ..< node.child_or_prim_start + node.prim_len {
tri := bvh.primitives[i]
i1, i2, i3 :=
mesh.indices[tri * 3], mesh.indices[tri * 3 + 1], mesh.indices[tri * 3 + 2]
v1, v2, v3 := mesh.vertices[i1], mesh.vertices[i2], mesh.vertices[i3]
centroid := (v1 + v2 + v3) * 0.33333333
aabb: AABB
aabb.min = Vec3 {
min(v1.x, v2.x, v3.x),
min(v1.y, v2.y, v3.y),
min(v1.z, v2.z, v3.z),
}
aabb.max = Vec3 {
max(v1.x, v2.x, v3.x),
max(v1.y, v2.y, v3.y),
max(v1.z, v2.z, v3.z),
}
size := lg.length(aabb.max - aabb.min)
rl.DrawTriangle3D(v1, v2, v3, debug_int_to_color(i32(tri) + 1))
rl.DrawBoundingBox(
rl.BoundingBox{aabb.min, aabb.max},
debug_int_to_color(i32(tri) + 2),
)
if size < 1 {
rl.DrawCubeWiresV(centroid, 0.05, debug_int_to_color(i32(tri) + 3))
}
}
}
}
}
debug_int_to_color :: proc(num: i32) -> (color: rl.Color) {
x := debug_hash(num)
color.r = u8(x % 256)
color.g = u8((x / 256) % 256)
color.b = u8((x / 256 / 256) % 256)
color.a = 255
return
}
debug_hash :: proc(num: i32) -> u32 {
x := cast(u32)num
x = ((x >> 16) ~ x) * 0x45d9f3b
x = ((x >> 16) ~ x) * 0x45d9f3b
x = (x >> 16) ~ x
return x
}
bvh_mesh_from_rl_mesh :: proc(mesh: rl.Mesh) -> Mesh {
return Mesh {
vertices = (cast([^]Vec3)mesh.vertices)[:mesh.vertexCount],
indices = mesh.indices[:mesh.triangleCount * 3],
}
}

View File

@ -79,7 +79,6 @@ plane_from_point_normal :: proc(point: Vec3, normal: Vec3) -> Plane {
} }
////////////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////////////
// Distance to closest point // Distance to closest point
// //
@ -119,7 +118,6 @@ squared_distance_segment :: proc(point, a, b: Vec3) -> f32 {
} }
////////////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////////////
// Closest point // Closest point
// //
@ -265,7 +263,6 @@ closest_point_triangle :: proc(point, a, b, c: Vec3) -> Vec3 {
} }
////////////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////////////
// Tests // Tests
// //
@ -300,7 +297,10 @@ test_sphere_vs_halfspace :: proc(sphere: Sphere, plane: Plane) -> bool {
test_box_vs_plane :: proc(box: Box, plane: Plane) -> bool { test_box_vs_plane :: proc(box: Box, plane: Plane) -> bool {
// Compute the projection interval radius of b onto L(t) = b.c + t * p.n // Compute the projection interval radius of b onto L(t) = b.c + t * p.n
r := box.rad.x * abs(plane.normal.x) + box.rad.y * abs(plane.normal.y) + box.rad.z * abs(plane.normal.z) r :=
box.rad.x * abs(plane.normal.x) +
box.rad.y * abs(plane.normal.y) +
box.rad.z * abs(plane.normal.z)
s := signed_distance_plane(box.pos, plane) s := signed_distance_plane(box.pos, plane)
return abs(s) <= r return abs(s) <= r
} }
@ -361,7 +361,6 @@ test_point_polyhedron :: proc(pos: Vec3, planes: []Plane) -> bool {
} }
////////////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////////////
// Intersections // Intersections
// //
@ -413,7 +412,13 @@ intersect_moving_aabbs :: proc(a, b: Aabb, vel_a, vel_b: Vec3) -> (t: [2]f32, ok
} }
// 'a' is static, 'b' is moving // 'a' is static, 'b' is moving
intersect_static_aabb_vs_moving_aabb :: proc(a, b: Aabb, vel_relative: Vec3) -> (t: [2]f32, ok: bool) { intersect_static_aabb_vs_moving_aabb :: proc(
a, b: Aabb,
vel_relative: Vec3,
) -> (
t: [2]f32,
ok: bool,
) {
// Exit early if a and b initially overlapping // Exit early if a and b initially overlapping
if test_aabb_vs_aabb(a, b) { if test_aabb_vs_aabb(a, b) {
return 0, true return 0, true
@ -445,7 +450,15 @@ intersect_static_aabb_vs_moving_aabb :: proc(a, b: Aabb, vel_relative: Vec3) ->
// Intersect sphere s with movement vector v with plane p. If intersecting // Intersect sphere s with movement vector v with plane p. If intersecting
// return t t of collision and point at which sphere hits plane // return t t of collision and point at which sphere hits plane
intersect_moving_sphere_vs_plane :: proc(sphere: Sphere, vel: Vec3, plane: Plane) -> (t: f32, point: Vec3, ok: bool) { intersect_moving_sphere_vs_plane :: proc(
sphere: Sphere,
vel: Vec3,
plane: Plane,
) -> (
t: f32,
point: Vec3,
ok: bool,
) {
// Compute distance of sphere center to plane // Compute distance of sphere center to plane
dist := dot(plane.normal, sphere.pos) - plane.dist dist := dot(plane.normal, sphere.pos) - plane.dist
if abs(dist) <= sphere.rad { if abs(dist) <= sphere.rad {
@ -487,7 +500,15 @@ intersect_ray_sphere :: proc(pos: Vec3, dir: Vec3, sphere: Sphere) -> (t: f32, o
return t, true return t, true
} }
intersect_ray_aabb :: proc(pos: Vec3, dir: Vec3, aabb: Aabb, range: f32 = max(f32)) -> (t: [2]f32, ok: bool) { intersect_ray_aabb :: proc(
pos: Vec3,
dir: Vec3,
aabb: Aabb,
range: f32 = max(f32),
) -> (
t: [2]f32,
ok: bool,
) {
// https://tavianator.com/cgit/dimension.git/tree/libdimension/bvh/bvh.c#n196 // https://tavianator.com/cgit/dimension.git/tree/libdimension/bvh/bvh.c#n196
// This is actually correct, even though it appears not to handle edge cases // This is actually correct, even though it appears not to handle edge cases
@ -502,12 +523,22 @@ intersect_ray_aabb :: proc(pos: Vec3, dir: Vec3, aabb: Aabb, range: f32 = max(f3
t1 := (aabb.min - pos) * inv_dir t1 := (aabb.min - pos) * inv_dir
t2 := (aabb.max - pos) * inv_dir t2 := (aabb.max - pos) * inv_dir
t = {max(min(t1.x, t2.x), min(t1.y, t2.y), min(t1.z, t2.z)), min(max(t1.x, t2.x), max(t1.y, t2.y), max(t1.z, t2.z))} t = {
max(min(t1.x, t2.x), min(t1.y, t2.y), min(t1.z, t2.z)),
min(max(t1.x, t2.x), max(t1.y, t2.y), max(t1.z, t2.z)),
}
return t, t[1] >= max(0.0, t[0]) && t[0] < range return t, t[1] >= max(0.0, t[0]) && t[0] < range
} }
intersect_ray_polyhedron :: proc(pos, dir: Vec3, planes: []Plane, segment: [2]f32 = {0.0, max(f32)}) -> (t: [2]f32, ok: bool) { intersect_ray_polyhedron :: proc(
pos, dir: Vec3,
planes: []Plane,
segment: [2]f32 = {0.0, max(f32)},
) -> (
t: [2]f32,
ok: bool,
) {
t = segment t = segment
for plane in planes { for plane in planes {
denom := dot(plane.normal, dir) denom := dot(plane.normal, dir)
@ -565,10 +596,6 @@ intersect_segment_triangle :: proc(
if t < 0 { if t < 0 {
return return
} }
if t > denom {
// For segment; exclude this code line for a ray test
return
}
// Compute barycentric coordinate components and test if within bounds // Compute barycentric coordinate components and test if within bounds
e := cross(qp, ap) e := cross(qp, ap)
@ -590,7 +617,14 @@ intersect_segment_triangle :: proc(
return t, normal, barycentric, true return t, normal, barycentric, true
} }
intersect_segment_plane :: proc(segment: [2]Vec3, plane: Plane) -> (t: f32, point: Vec3, ok: bool) { intersect_segment_plane :: proc(
segment: [2]Vec3,
plane: Plane,
) -> (
t: f32,
point: Vec3,
ok: bool,
) {
ab := segment[1] - segment[0] ab := segment[1] - segment[0]
t = (plane.dist - dot(plane.normal, segment[0])) / dot(plane.normal, ab) t = (plane.dist - dot(plane.normal, segment[0])) / dot(plane.normal, ab)

View File

@ -85,7 +85,7 @@ Body_Ptr :: #soa^#soa[]Body
Suspension_Constraint_Ptr :: #soa^#soa[]Suspension_Constraint Suspension_Constraint_Ptr :: #soa^#soa[]Suspension_Constraint
_invalid_body: #soa[1]Body _invalid_body: #soa[1]Body
_invalid_body_slice: #soa[]Body _invalid_body_slice := _invalid_body[:]
_invalid_suspension_constraint: #soa[1]Suspension_Constraint _invalid_suspension_constraint: #soa[1]Suspension_Constraint
_invalid_suspension_constraint_slice := _invalid_suspension_constraint[:] _invalid_suspension_constraint_slice := _invalid_suspension_constraint[:]
@ -93,7 +93,7 @@ _invalid_suspension_constraint_slice := _invalid_suspension_constraint[:]
/// Returns pointer to soa slice. NEVER STORE IT /// Returns pointer to soa slice. NEVER STORE IT
get_body :: proc(scene: ^Scene, handle: Body_Handle) -> Body_Ptr { get_body :: proc(scene: ^Scene, handle: Body_Handle) -> Body_Ptr {
index := int(handle) - 1 index := int(handle) - 1
if index < 0 { if index < 0 || index >= len(scene.bodies_slice) {
return &_invalid_body_slice[0] return &_invalid_body_slice[0]
} }