Disable edge separation tests for now and make a stress test

This commit is contained in:
sergeypdev 2025-03-01 20:54:26 +04:00
parent 0f60cdda13
commit a1e8d0f231
5 changed files with 103 additions and 102 deletions

View File

@ -35,7 +35,7 @@ esac
# Build the game.
echo "Building game$DLL_EXT"
odin build game -extra-linker-flags:"$EXTRA_LINKER_FLAGS" -define:RAYLIB_SHARED=true -define:TRACY_ENABLE=true -collection:libs=./libs -collection:common=./common -collection:game=./game -build-mode:dll -out:game_tmp$DLL_EXT -strict-style -vet -debug
odin build game -extra-linker-flags:"$EXTRA_LINKER_FLAGS" -define:RAYLIB_SHARED=true -define:TRACY_ENABLE=true -collection:libs=./libs -collection:common=./common -collection:game=./game -build-mode:dll -out:game_tmp$DLL_EXT -strict-style -vet -debug -o:speed
# Need to use a temp file on Linux because it first writes an empty `game.so`, which the game will load before it is actually fully written.
mv game_tmp$DLL_EXT game$DLL_EXT

View File

@ -260,12 +260,13 @@ update_runtime_world :: proc(runtime_world: ^Runtime_World, dt: f32) {
#hash("car", "fnv32a"),
physics.Body_Config {
initial_pos = {0, 4, 0},
initial_rot = linalg.quaternion_angle_axis(
math.RAD_PER_DEG * 180,
rl.Vector3{0, 0, 1},
) *
linalg.quaternion_angle_axis(math.RAD_PER_DEG * 30, rl.Vector3{1, 0, 0}),
initial_ang_vel = {0, 0, 20},
initial_rot = linalg.QUATERNIONF32_IDENTITY,
// initial_rot = linalg.quaternion_angle_axis(
// math.RAD_PER_DEG * 180,
// rl.Vector3{0, 0, 1},
// ) *
// linalg.quaternion_angle_axis(math.RAD_PER_DEG * 30, rl.Vector3{1, 0, 0}),
initial_ang_vel = {0, 0, 0},
shape = physics.Shape_Convex {
mesh = car_convex.mesh,
center_of_mass = car_convex.center_of_mass,
@ -278,7 +279,7 @@ update_runtime_world :: proc(runtime_world: ^Runtime_World, dt: f32) {
if true {
for x in 0 ..< 10 {
for y in -3 ..< 10 {
for y in -3 ..< 100 {
physics.immediate_body(
&world.physics_scene,
&runtime_world.solver_state,

View File

@ -180,121 +180,121 @@ query_separation_edges :: proc(
step := 0
separating_plane_p: Vec3
success_step: int
if false {
Edge_Pair :: [2]halfedge.Edge_Index
checked_pairs := make_map_cap(
map[Edge_Pair]bool,
len(a.edges) * len(b.edges),
context.temp_allocator,
)
separating_plane_p: Vec3
success_step: int
for edge_a, edge_a_idx in a.edges {
for edge_b, edge_b_idx in b.edges {
pair := Edge_Pair{halfedge.Edge_Index(edge_a_idx), halfedge.Edge_Index(edge_b_idx)}
if checked_pairs[pair] {
continue
}
Edge_Pair :: [2]halfedge.Edge_Index
checked_pairs := make_map_cap(
map[Edge_Pair]bool,
len(a.edges) * len(b.edges),
context.temp_allocator,
)
tracy.ZoneN("collision.query_separation_edges::check_single_pair")
for edge_a, edge_a_idx in a.edges {
for edge_b, edge_b_idx in b.edges {
pair := Edge_Pair{halfedge.Edge_Index(edge_a_idx), halfedge.Edge_Index(edge_b_idx)}
if checked_pairs[pair] {
continue
}
checked_pairs[pair] = true
if edge_a.twin >= 0 {
checked_pairs[{edge_a.twin, halfedge.Edge_Index(edge_b_idx)}] = true
}
if edge_b.twin >= 0 {
checked_pairs[{halfedge.Edge_Index(edge_a_idx), edge_b.twin}] = true
}
if edge_a.twin >= 0 && edge_b.twin >= 0 {
checked_pairs[{edge_a.twin, edge_b.twin}] = true
}
checked_pairs[pair] = true
if edge_a.twin >= 0 {
checked_pairs[{edge_a.twin, halfedge.Edge_Index(edge_b_idx)}] = true
}
if edge_b.twin >= 0 {
checked_pairs[{halfedge.Edge_Index(edge_a_idx), edge_b.twin}] = true
}
if edge_a.twin >= 0 && edge_b.twin >= 0 {
checked_pairs[{edge_a.twin, edge_b.twin}] = true
}
edge_a_dir := halfedge.get_edge_direction_normalized(a, edge_a)
edge_b_dir := halfedge.get_edge_direction_normalized(b, edge_b)
edge_a_dir := halfedge.get_edge_direction_normalized(a, edge_a)
edge_b_dir := halfedge.get_edge_direction_normalized(b, edge_b)
axis := lg.normalize0(lg.cross(edge_a_dir, edge_b_dir))
axis := lg.normalize0(lg.cross(edge_a_dir, edge_b_dir))
if axis == 0 {
continue
}
if axis == 0 {
continue
}
edge_a_origin, _ := halfedge.get_edge_points(a, edge_a)
if lg.dot(axis, edge_a_origin - a.center) < 0 {
axis = -axis
}
plane_a := plane_from_point_normal(edge_a_origin, axis)
vert_a, _, _ := find_support_point(a, plane_a.normal)
vert_b, vert_b_idx, _ := find_support_point(b, -plane_a.normal)
edge_a_origin, _ := halfedge.get_edge_points(a, edge_a)
if lg.dot(axis, edge_a_origin - a.center) < 0 {
axis = -axis
}
plane_a := plane_from_point_normal(edge_a_origin, axis)
vert_a, _, _ := find_support_point(a, plane_a.normal)
vert_b, vert_b_idx, _ := find_support_point(b, -plane_a.normal)
// We found the support vert on mesh b, but now we need to find the
// best edge that includes that point
vert_b_edge: halfedge.Half_Edge
vert_b_edge_idx: halfedge.Edge_Index = -1
{
min_b2_distance := max(f32)
it := halfedge.iterator_vertex_edges(b, vert_b_idx)
for edge, edge_idx in halfedge.iterate_next_vertex_edge(&it) {
_, vert_b2 := halfedge.get_edge_points(b, edge)
// We found the support vert on mesh b, but now we need to find the
// best edge that includes that point
vert_b_edge: halfedge.Half_Edge
vert_b_edge_idx: halfedge.Edge_Index = -1
{
min_b2_distance := max(f32)
it := halfedge.iterator_vertex_edges(b, vert_b_idx)
for edge, edge_idx in halfedge.iterate_next_vertex_edge(&it) {
_, vert_b2 := halfedge.get_edge_points(b, edge)
distance_b2 := signed_distance_plane(vert_b2, plane_a)
if distance_b2 < min_b2_distance {
min_b2_distance = distance_b2
vert_b_edge = edge
vert_b_edge_idx = edge_idx
distance_b2 := signed_distance_plane(vert_b2, plane_a)
if distance_b2 < min_b2_distance {
min_b2_distance = distance_b2
vert_b_edge = edge
vert_b_edge_idx = edge_idx
}
}
if vert_b_edge_idx < 0 {
continue
}
}
if vert_b_edge_idx < 0 {
distance_a := signed_distance_plane(vert_a.pos, plane_a)
if distance_a > 0 {
continue
}
}
distance_b := signed_distance_plane(vert_b.pos, plane_a)
vert_b_projected := vert_b.pos + plane_a.normal * -distance_b
distance_a := signed_distance_plane(vert_a.pos, plane_a)
if distance_a > 0 {
continue
}
distance_b := signed_distance_plane(vert_b.pos, plane_a)
vert_b_projected := vert_b.pos + plane_a.normal * -distance_b
if step == -1 {
// a1, a2 := halfedge.get_edge_points(a, edge_a)
// edge_a_center := (a1 + a2) * 0.5
a1, a2 := halfedge.get_edge_points(halfedge.Half_Edge_Mesh(a), edge_a)
b1, b2 := halfedge.get_edge_points(halfedge.Half_Edge_Mesh(b), vert_b_edge)
if step == -1 {
// a1, a2 := halfedge.get_edge_points(a, edge_a)
// edge_a_center := (a1 + a2) * 0.5
a1, a2 := halfedge.get_edge_points(halfedge.Half_Edge_Mesh(a), edge_a)
b1, b2 := halfedge.get_edge_points(halfedge.Half_Edge_Mesh(b), vert_b_edge)
rl.DrawLine3D(edge_a_origin, edge_a_origin + plane_a.normal, rl.BLUE)
rl.DrawLine3D(a1 + 0.1, a2 + 0.1, rl.ORANGE)
rl.DrawLine3D(b1 + 0.1, b2 + 0.1, rl.PURPLE)
rl.DrawLine3D(edge_a_origin, edge_a_origin + plane_a.normal, rl.BLUE)
rl.DrawLine3D(a1 + 0.1, a2 + 0.1, rl.ORANGE)
rl.DrawLine3D(b1 + 0.1, b2 + 0.1, rl.PURPLE)
rl.DrawSphereWires(edge_a_origin, 0.1, 4, 4, rl.ORANGE)
rl.DrawSphereWires(vert_b.pos, 0.05, 4, 4, rl.BLUE)
rl.DrawSphereWires(vert_b_projected, 0.05, 4, 4, rl.BLUE)
rl.DrawLine3D(vert_b.pos, vert_b_projected, rl.VIOLET)
log.debugf("dist: %v", distance_b)
rl.DrawSphereWires(edge_a_origin, 0.1, 4, 4, rl.ORANGE)
rl.DrawSphereWires(vert_b.pos, 0.05, 4, 4, rl.BLUE)
rl.DrawSphereWires(vert_b_projected, 0.05, 4, 4, rl.BLUE)
rl.DrawLine3D(vert_b.pos, vert_b_projected, rl.VIOLET)
log.debugf("dist: %v", distance_b)
{
// rl.BeginBlendMode(.ALPHA)
// defer rl.EndBlendMode()
debug_draw_plane(edge_a_origin, plane_a, rl.Color{0, 228, 48, 100})
{
// rl.BeginBlendMode(.ALPHA)
// defer rl.EndBlendMode()
debug_draw_plane(edge_a_origin, plane_a, rl.Color{0, 228, 48, 100})
}
}
}
if distance_b > separation {
separation = distance_b
a_edge = halfedge.Edge_Index(edge_a_idx)
b_edge = vert_b_edge_idx
separating_plane = plane_a
separating_plane_p = edge_a_origin
success_step = step
}
if distance_b > separation {
separation = distance_b
a_edge = halfedge.Edge_Index(edge_a_idx)
b_edge = vert_b_edge_idx
separating_plane = plane_a
separating_plane_p = edge_a_origin
success_step = step
}
step += 1
step += 1
}
}
// log.debugf("step: %v", success_step)
// debug_draw_plane(separating_plane_p, separating_plane, rl.Color{228, 0, 48, 100})
}
// log.debugf("step: %v", success_step)
// debug_draw_plane(separating_plane_p, separating_plane, rl.Color{228, 0, 48, 100})
return
}

View File

@ -3,7 +3,7 @@ package physics
import "collision"
import lg "core:math/linalg"
MAX_CONTACTS :: 1024
MAX_CONTACTS :: 1024 * 16
Vec3 :: [3]f32
Quat :: quaternion128

View File

@ -170,7 +170,7 @@ simulate :: proc(
}
}
bvh.debug_draw_bvh_bounds(&sim_state_bvh, body_aabbs, 0)
// bvh.debug_draw_bvh_bounds(&sim_state_bvh, body_aabbs, 0)
switch step_mode {
case .Accumulated_Time:
@ -507,7 +507,7 @@ simulate_step :: proc(
prev_v_normal := lg.dot(prev_v, manifold.normal)
v_normal := lg.dot(v, manifold.normal)
RESTITUTION :: 0.3
RESTITUTION :: 1
restitution := f32(RESTITUTION)