package physics import "collision" import "core:fmt" import "core:math" import lg "core:math/linalg" import "core:slice" import "libs:tracy" import rl "vendor:raylib" _ :: math _ :: fmt Solver_Config :: struct { // Will automatically do fixed timestep timestep: f32, gravity: rl.Vector3, substreps_minus_one: i32, } Solver_State :: struct { accumulated_time: f32, // Incremented when simulate is called (not simulate_step) simulation_frame: u32, // Number of immediate bodies referenced this frame num_referenced_bodies: i32, num_referenced_suspension_constraints: i32, immedate_bodies: map[u32]Immedate_State(Body_Handle), immediate_suspension_constraints: map[u32]Immedate_State(Suspension_Constraint_Handle), } destroy_solver_state :: proc(state: ^Solver_State) { delete(state.immedate_bodies) delete(state.immediate_suspension_constraints) } Immedate_State :: struct($T: typeid) { handle: T, // When was this referenced last time (frame number) last_ref: u32, } MAX_STEPS :: 10 // Outer simulation loop for fixed timestepping simulate :: proc(scene: ^Scene, state: ^Solver_State, config: Solver_Config, dt: f32) { assert(config.timestep > 0) prune_immediate(scene, state) state.accumulated_time += dt num_steps := 0 for state.accumulated_time >= config.timestep { num_steps += 1 state.accumulated_time -= config.timestep if num_steps < MAX_STEPS { simulate_step(scene, config) } } state.simulation_frame += 1 state.num_referenced_bodies = 0 state.num_referenced_suspension_constraints = 0 } Body_Sim_State :: struct { prev_x: rl.Vector3, prev_v: rl.Vector3, prev_w: rl.Vector3, prev_q: rl.Quaternion, } GLOBAL_PLANE :: collision.Plane { normal = rl.Vector3{0, 1, 0}, dist = 0, } Contact_Pair :: struct { a, b: Body_Handle, prev_x_a, prev_x_b: rl.Vector3, prev_q_a, prev_q_b: rl.Quaternion, manifold: collision.Contact_Manifold, applied_corrections: int, lambda_normal: [4]f32, lambda_tangent: [4]f32, applied_static_friction: [4]bool, applied_normal_correction: [4]f32, } simulate_step :: proc(scene: ^Scene, config: Solver_Config) { tracy.Zone() body_states := make([]Body_Sim_State, len(scene.bodies), context.temp_allocator) scene.contact_pairs_len = 0 substeps := config.substreps_minus_one + 1 dt := config.timestep / f32(substeps) inv_dt := 1.0 / dt for _ in 0 ..< substeps { // Integrate positions and rotations for &body, i in scene.bodies { if body.alive { body_states[i].prev_x = body.x body_states[i].prev_v = body.v body_states[i].prev_w = body.w body_states[i].prev_q = body.q body.v += config.gravity * dt * (body.inv_mass == 0 ? 0 : 1) // special case for gravity, TODO body.x += body.v * dt // NOTE: figure out how this works https://fgiesen.wordpress.com/2012/08/24/quaternion-differentiation/ q := body.q w := body.w delta_rot := quaternion(x = w.x, y = w.y, z = w.z, w = 0) delta_rot = delta_rot * q q.x += 0.5 * dt * delta_rot.x q.y += 0.5 * dt * delta_rot.y q.z += 0.5 * dt * delta_rot.z q.w += 0.5 * dt * delta_rot.w q = lg.normalize0(q) body.q = q } } Body_Pair :: struct { a, b: int, } handled_pairs := make_map(map[Body_Pair]bool, context.temp_allocator) { tracy.ZoneN("simulate_step::collisions") for _, i in scene.bodies { body := &scene.bodies_slice[i] if body.alive { for _, j in scene.bodies { body2 := &scene.bodies_slice[j] if i != j && body2.alive && !handled_pairs[{a = min(i, j), b = max(i, j)}] { m1, m2 := body_get_convex_shape_world(body), body_get_convex_shape_world(body2) // Raw manifold has contact points in world space raw_manifold, collision := collision.convex_vs_convex_sat(m1, m2) if collision { contact_pair := &scene.contact_pairs[scene.contact_pairs_len] contact_pair^ = Contact_Pair { a = Body_Handle(i + 1), b = Body_Handle(j + 1), prev_x_a = body.x, prev_x_b = body2.x, prev_q_a = body.q, prev_q_b = body2.q, manifold = raw_manifold, } scene.contact_pairs_len += 1 manifold := &contact_pair.manifold // Convert manifold contact from world to local space for point_idx in 0 ..< manifold.points_len { manifold.points_a[point_idx] = body_world_to_local( body, manifold.points_a[point_idx], ) manifold.points_b[point_idx] = body_world_to_local( body2, manifold.points_b[point_idx], ) } for point_idx in 0 ..< manifold.points_len { p1, p2 := manifold.points_a[point_idx], manifold.points_b[point_idx] p1, p2 = body_local_to_world(body, p1), body_local_to_world(body2, p2) p_diff_normal := lg.dot(p2 - p1, manifold.normal) separation := min(p_diff_normal, 0) handled_pairs[{a = min(i, j), b = max(i, j)}] = true lambda_norm, corr1, corr2, ok := calculate_constraint_params2( dt, body, body2, 0, separation, -manifold.normal, p1, p2, ) if ok { contact_pair.applied_normal_correction[point_idx] = -separation contact_pair.applied_corrections += 1 contact_pair.lambda_normal[point_idx] = lambda_norm apply_correction(body, corr1, p1) apply_correction(body2, corr2, p2) } } } } } } } } { tracy.ZoneN("simulate_step::static_friction") if false { context = context context.user_ptr = scene slice.sort_by( scene.contact_pairs[:scene.contact_pairs_len], proc(c1, c2: Contact_Pair) -> bool { scene := cast(^Scene)context.user_ptr find_min_contact_y :: proc( scene: ^Scene, c: Contact_Pair, ) -> ( min_contact_y: f32, ) { min_contact_y = max(f32) body_a, body_b := get_body(scene, c.a), get_body(scene, c.b) for i in 0 ..< c.manifold.points_len { min_contact_y = min( body_local_to_world(body_a, c.manifold.points_a[i]).y, body_local_to_world(body_b, c.manifold.points_b[i]).y, ) } return } min_y1 := find_min_contact_y(scene, c1) min_y2 := find_min_contact_y(scene, c2) return min_y1 > min_y2 }, ) } for &contact_pair in scene.contact_pairs[:scene.contact_pairs_len] { manifold := contact_pair.manifold body, body2 := get_body(scene, contact_pair.a), get_body(scene, contact_pair.b) i, j := int(contact_pair.a) - 1, int(contact_pair.b) - 1 for point_idx in 0 ..< manifold.points_len { lambda_norm := contact_pair.lambda_normal[point_idx] if lambda_norm != 0 { p1 := body_local_to_world(body, manifold.points_a[point_idx]) p2 := body_local_to_world(body2, manifold.points_b[point_idx]) prev_p1 := body_states[i].prev_x + lg.quaternion_mul_vector3( body_states[i].prev_q, manifold.points_a[point_idx], ) prev_p2 := body_states[j].prev_x + lg.quaternion_mul_vector3( body_states[j].prev_q, manifold.points_b[point_idx], ) p_diff_tangent := (p1 - prev_p1) - (p2 - prev_p2) p_diff_tangent -= lg.dot(p_diff_tangent, manifold.normal) * manifold.normal tangent_diff_len := lg.length(p_diff_tangent) if tangent_diff_len > 0 { tangent_diff_normalized := p_diff_tangent / tangent_diff_len delta_lambda_tangent, corr1_tangent, corr2_tangent, ok_tangent := calculate_constraint_params2( dt, body, body2, 0, -tangent_diff_len / max(f32(contact_pair.applied_corrections) * 0.5, 1), -tangent_diff_normalized, p1, p2, ) STATIC_FRICTION :: 0.6 if ok_tangent && delta_lambda_tangent < STATIC_FRICTION * lambda_norm { contact_pair.applied_static_friction[point_idx] = true contact_pair.lambda_tangent[point_idx] = delta_lambda_tangent apply_correction(body, corr1_tangent, p1) apply_correction(body2, corr2_tangent, p2) } } } } } } { tracy.ZoneN("simulate_step::suspension_constraints") for &v in scene.suspension_constraints { if v.alive { body := get_body(scene, v.body) pos := body_local_to_world(body, v.rel_pos) dir := body_local_to_world_vec(body, v.rel_dir) pos2 := pos + dir * v.rest v.hit_t, v.hit_point, v.hit = collision.intersect_segment_plane( {pos, pos2}, collision.plane_from_point_normal({}, collision.Vec3{0, 1, 0}), ) if v.hit { corr := pos - v.hit_point distance := lg.length(corr) corr = corr / distance if distance > 0 else 0 _ = apply_constraint_correction_unilateral( dt, body, v.compliance, error = distance - v.rest, error_gradient = corr, pos = pos, other_combined_inv_mass = 0, ) } } } } solve_velocities(scene, body_states, inv_dt) // Restituion { tracy.ZoneN("simulate_step::restitution") for &pair in scene.contact_pairs[:scene.contact_pairs_len] { i, j := int(pair.a) - 1, int(pair.b) - 1 manifold := &pair.manifold body, body2 := get_body(scene, pair.a), get_body(scene, pair.b) s1, s2 := body_states[i], body_states[j] prev_q1, prev_q2 := s1.prev_q, s2.prev_q for point_idx in 0.. 0 { v_tangent_norm := v_tangent / v_tangent_len w1, w2 := get_body_inverse_mass(body1, v_tangent_norm, p1), get_body_inverse_mass(body2, v_tangent_norm, p2) w := w1 + w2 if w > 0 { delta_v := -v_tangent_norm * min( dt * DYNAMIC_FRICTION * abs(pair.lambda_normal[point_idx] / (dt * dt)), v_tangent_len / w, ) // delta_v_norm := lg.normalize0(delta_v) p := delta_v body1.v += p * body1.inv_mass body2.v -= p * body2.inv_mass body1.w += multiply_inv_intertia(body1, lg.cross(r1, p)) body2.w -= multiply_inv_intertia(body2, lg.cross(r2, p)) } } } } } // Solve suspension velocity for _, i in scene.suspension_constraints { v := &scene.suspension_constraints_slice[i] if v.alive { body_idx := int(v.body) - 1 body := get_body(scene, v.body) if body.alive && v.hit { prev_x, prev_q := body_states[body_idx].prev_x, body_states[body_idx].prev_q wheel_world_pos := body_local_to_world(body, v.rel_pos) prev_wheel_world_pos := prev_x + lg.quaternion_mul_vector3(prev_q, v.rel_pos) vel_3d := (wheel_world_pos - prev_wheel_world_pos) * inv_dt dir := body_local_to_world_vec(body, v.rel_dir) body_state := body_states[i32(v.body) - 1] // Spring damping if true { vel := lg.dot(vel_3d, dir) damping := -vel * min(v.damping * dt, 1) _ = apply_constraint_correction_unilateral( dt, body, 0, error = damping, error_gradient = -dir, pos = wheel_world_pos, ) body_solve_velocity(body, body_state, inv_dt) } // Drive forces if true { total_impulse := v.drive_impulse - v.brake_impulse forward := body_local_to_world_vec(body, rl.Vector3{0, 0, 1}) _ = apply_constraint_correction_unilateral( dt, body, 0, total_impulse * dt * dt, -forward, wheel_world_pos, ) body_solve_velocity(body, body_state, inv_dt) } // Lateral friction if true { vel_contact := body_velocity_at_point(body, v.hit_point) right := wheel_get_right_vec(body, v) lateral_vel := lg.dot(right, vel_contact) friction := f32(0.5) impulse := -lateral_vel * friction corr := right * impulse * dt v.applied_impulse.x = impulse apply_correction(body, corr, v.hit_point) body_solve_velocity(body, body_state, inv_dt) } } } } } } solve_velocities :: proc(scene: ^Scene, body_states: []Body_Sim_State, inv_dt: f32) { // Compute new linear and angular velocities for _, i in scene.bodies_slice { body := &scene.bodies_slice[i] if body.alive { body_solve_velocity(body, body_states[i], inv_dt) } } } body_solve_velocity :: #force_inline proc(body: Body_Ptr, state: Body_Sim_State, inv_dt: f32) { body.v = (body.x - state.prev_x) * inv_dt delta_q := body.q * lg.quaternion_inverse(state.prev_q) body.w = rl.Vector3{delta_q.x, delta_q.y, delta_q.z} * 2.0 * inv_dt if delta_q.w < 0 { body.w = -body.w } } calculate_constraint_params1 :: proc( dt: f32, body: Body_Ptr, compliance: f32, error: f32, error_gradient: rl.Vector3, pos: rl.Vector3, other_combined_inv_mass: f32, ) -> ( lambda: f32, w: f32, correction: rl.Vector3, ok: bool, ) { if error == 0 { return } w = get_body_inverse_mass(body, error_gradient, pos) w += other_combined_inv_mass if w == 0 { return } ok = true alpha := compliance / dt / dt lambda = -error / (w + alpha) correction = -error_gradient * -lambda return } calculate_constraint_params2 :: proc( dt: f32, body1: Body_Ptr, body2: Body_Ptr, compliance: f32, error: f32, error_gradient: rl.Vector3, pos1: rl.Vector3, pos2: rl.Vector3, ) -> ( lambda: f32, correction1: rl.Vector3, correction2: rl.Vector3, ok: bool, ) { if error == 0 { return } w := get_body_inverse_mass(body1, -error_gradient, pos1) w += get_body_inverse_mass(body2, error_gradient, pos2) if w == 0 { return } ok = true alpha := compliance / dt / dt lambda = -error / (w + alpha) correction1 = -error_gradient * -lambda correction2 = error_gradient * -lambda return } apply_constraint_correction_unilateral :: proc( dt: f32, body: Body_Ptr, compliance: f32, error: f32, error_gradient: rl.Vector3, pos: rl.Vector3, other_combined_inv_mass: f32 = 0, ) -> ( lambda: f32, ) { w: f32 correction: rl.Vector3 ok: bool lambda, w, correction, ok = calculate_constraint_params1( dt, body, compliance, error, error_gradient, pos, other_combined_inv_mass, ) if ok { apply_correction(body, correction, pos) } return } multiply_inv_intertia :: proc(body: Body_Ptr, vec: rl.Vector3) -> (result: rl.Vector3) { q := body.q inv_q := lg.quaternion_normalize0(lg.quaternion_inverse(q)) result = lg.quaternion_mul_vector3(inv_q, vec) result *= body.inv_inertia_tensor result = lg.quaternion_mul_vector3(q, result) return result } apply_correction :: proc(body: Body_Ptr, corr: rl.Vector3, pos: rl.Vector3) { body.x += corr * body.inv_mass q := body.q inv_q := lg.quaternion_normalize0(lg.quaternion_inverse(q)) delta_omega := pos - body.x delta_omega = lg.cross(delta_omega, corr) delta_omega = lg.quaternion_mul_vector3(inv_q, delta_omega) delta_omega *= body.inv_inertia_tensor delta_omega = lg.quaternion_mul_vector3(q, delta_omega) delta_rot := quaternion(x = delta_omega.x, y = delta_omega.y, z = delta_omega.z, w = 0) delta_rot *= q q.x += 0.5 * delta_rot.x q.y += 0.5 * delta_rot.y q.z += 0.5 * delta_rot.z q.w += 0.5 * delta_rot.w q = lg.normalize0(q) body.q = q } get_body_inverse_mass :: proc(body: Body_Ptr, normal, pos: rl.Vector3) -> f32 { q := body.q inv_q := lg.quaternion_normalize0(lg.quaternion_inverse(q)) rn := pos - body.x rn = lg.cross(rn, normal) rn = lg.quaternion_mul_vector3(inv_q, rn) w := lg.dot(rn, rn * body.inv_inertia_tensor) w += body.inv_mass return w }