package physics import "bvh" import "collision" import "core:container/bit_array" import "core:fmt" import "core:math" import lg "core:math/linalg" import "core:math/rand" import "core:slice" import "libs:tracy" _ :: rand _ :: math _ :: fmt _ :: slice Solver_Config :: struct { // Will automatically do fixed timestep timestep: f32, gravity: Vec3, substreps_minus_one: i32, } Solver_State :: struct { accumulated_time: f32, // Incremented when simulate is called (not simulate_step) simulation_frame: u32, // Number of immediate bodies referenced this frame num_referenced_bodies: i32, num_referenced_suspension_constraints: i32, immedate_bodies: map[u32]Immedate_State(Body_Handle), immediate_suspension_constraints: map[u32]Immedate_State(Suspension_Constraint_Handle), } destroy_solver_state :: proc(state: ^Solver_State) { delete(state.immedate_bodies) delete(state.immediate_suspension_constraints) } Immedate_State :: struct($T: typeid) { handle: T, // When was this referenced last time (frame number) last_ref: u32, } MAX_STEPS :: 10 // TODO: move into scene.odin // Copy current state to next sim_state_copy :: proc(dst: ^Sim_State, src: ^Sim_State) { tracy.Zone() convex_container_reconcile(&src.convex_container) dst.num_bodies = src.num_bodies dst.first_free_body_plus_one = src.first_free_body_plus_one dst.first_free_suspension_constraint_plus_one = src.first_free_suspension_constraint_plus_one resize(&dst.bodies, len(src.bodies)) resize(&dst.suspension_constraints, len(src.suspension_constraints)) dst.bodies_slice = dst.bodies[:] dst.suspension_constraints_slice = dst.suspension_constraints[:] for i in 0 ..< len(dst.bodies) { dst.bodies[i] = src.bodies[i] } for i in 0 ..< len(dst.suspension_constraints) { dst.suspension_constraints[i] = src.suspension_constraints[i] } contact_container_copy(&dst.contact_container, src.contact_container) convex_container_copy(&dst.convex_container, src.convex_container) } Step_Mode :: enum { Accumulated_Time, Single, } // Top Level Acceleration Structure TLAS :: struct { bvh_tree: bvh.BVH, body_aabbs: []bvh.AABB, } // TODO: free intermediate temp allocs // Creates TLAS using temp allocator build_tlas :: proc(sim_state: ^Sim_State, config: Solver_Config) -> TLAS { tracy.Zone() body_aabbs := make([]bvh.AABB, sim_state.num_bodies, context.temp_allocator) body_indices := make([]u16, sim_state.num_bodies, context.temp_allocator) { aabb_index := 0 for i in 0 ..< len(sim_state.bodies_slice) { body := &sim_state.bodies_slice[i] if body.alive { aabb := &body_aabbs[aabb_index] body_indices[aabb_index] = u16(i) aabb_index += 1 phys_aabb := body_get_aabb(body) EXPAND_K :: 2 expand := lg.abs(EXPAND_K * config.timestep * body.v) phys_aabb.extent += expand * 0.5 aabb.min = phys_aabb.center - phys_aabb.extent aabb.max = phys_aabb.center + phys_aabb.extent } } } sim_state_bvh := bvh.build_bvh_from_aabbs(body_aabbs, body_indices, context.temp_allocator) return TLAS{bvh_tree = sim_state_bvh, body_aabbs = body_aabbs} } // TODO: free intermediate temp allocs find_new_contacts :: proc(sim_state: ^Sim_State, tlas: ^TLAS) { tracy.Zone() for i in 0 ..< len(sim_state.bodies_slice) { assert(i <= int(max(u16))) body_idx := u16(i) body := &sim_state.bodies_slice[i] if body.alive { body_aabb := tlas.body_aabbs[i] it := bvh.iterator_intersect_leaf(&tlas.bvh_tree, body_aabb) for leaf_node in bvh.iterator_intersect_leaf_next(&it) { for j in 0 ..< leaf_node.prim_len { other_body_idx := tlas.bvh_tree.primitives[leaf_node.child_or_prim_start + j] prim_aabb := tlas.body_aabbs[other_body_idx] pair := make_contact_pair(i32(body_idx), i32(other_body_idx)) if body_idx != other_body_idx && bvh.test_aabb_vs_aabb(body_aabb, prim_aabb) && !(pair in sim_state.contact_container.lookup) { new_contact_idx := len(sim_state.contact_container.contacts) resize_soa(&sim_state.contact_container.contacts, new_contact_idx + 1) contact := &sim_state.contact_container.contacts[new_contact_idx] contact^ = Contact { a = Body_Handle(i + 1), b = Body_Handle(other_body_idx + 1), } sim_state.contact_container.lookup[pair] = i32(new_contact_idx) } } } } } } // Outer simulation loop for fixed timestepping simulate :: proc( scene: ^Scene, state: ^Solver_State, config: Solver_Config, dt: f32, commit := true, // commit = false is a special mode for debugging physics stepping to allow rerunning the same step each frame step_mode := Step_Mode.Accumulated_Time, ) { tracy.Zone() assert(config.timestep > 0) prune_immediate(scene, state) sim_state_copy(get_next_sim_state(scene), get_sim_state(scene)) sim_state := get_next_sim_state(scene) num_steps := 0 switch step_mode { case .Accumulated_Time: state.accumulated_time += dt for state.accumulated_time >= config.timestep { num_steps += 1 state.accumulated_time -= config.timestep if num_steps < MAX_STEPS { simulate_step(scene, sim_state, config) } } case .Single: simulate_step(scene, get_next_sim_state(scene), config) num_steps += 1 } if num_steps > 0 && commit { flip_sim_state(scene) } state.simulation_frame += 1 state.num_referenced_bodies = 0 state.num_referenced_suspension_constraints = 0 } GLOBAL_PLANE :: collision.Plane { normal = Vec3{0, 1, 0}, dist = 0, } Contact :: struct { a, b: Body_Handle, prev_x_a, prev_x_b: Vec3, prev_q_a, prev_q_b: Quat, manifold: collision.Contact_Manifold, applied_corrections: int, lambda_normal: [4]f32, lambda_tangent: [4]f32, applied_static_friction: [4]bool, applied_normal_correction: [4]f32, } update_contacts :: proc(sim_state: ^Sim_State) { tracy.Zone() graph_color_bitmask: [4]bit_array.Bit_Array for i in 0 ..< len(graph_color_bitmask) { bit_array.init( &graph_color_bitmask[i], len(sim_state.bodies_slice), 0, context.temp_allocator, ) } for contact_idx in 0 ..< len(sim_state.contact_container.contacts) { contact := &sim_state.contact_container.contacts[contact_idx] i, j := i32(contact.a) - 1, i32(contact.b) - 1 body, body2 := &sim_state.bodies_slice[i], &sim_state.bodies_slice[j] assert(body.alive) assert(body2.alive) contact.prev_x_a = body.x contact.prev_x_b = body2.x contact.prev_q_a = body.q contact.prev_q_b = body2.q contact.manifold = {} contact.lambda_normal = 0 contact.lambda_tangent = 0 contact.applied_static_friction = false contact.applied_normal_correction = 0 aabb1, aabb2 := body_get_aabb(body), body_get_aabb(body2) // TODO: extract common math functions into a sane place if !collision.test_aabb_vs_aabb( {min = aabb1.center - aabb1.extent, max = aabb1.center + aabb1.extent}, {min = aabb2.center - aabb2.extent, max = aabb2.center + aabb2.extent}, ) { continue } m1, m2 := body_get_convex_shape_world(sim_state, body), body_get_convex_shape_world(sim_state, body2) // Raw manifold has contact points in world space raw_manifold, collision := collision.convex_vs_convex_sat(m1, m2) if collision { manifold := &contact.manifold manifold^ = raw_manifold // Convert manifold contact from world to local space for point_idx in 0 ..< manifold.points_len { manifold.points_a[point_idx] = body_world_to_local( body, manifold.points_a[point_idx], ) manifold.points_b[point_idx] = body_world_to_local( body2, manifold.points_b[point_idx], ) } } } } xpbd_predict_positions :: proc(sim_state: ^Sim_State, config: Solver_Config, dt: f32) { // Integrate positions and rotations for &body in sim_state.bodies { if body.alive { body.prev_x = body.x body.prev_v = body.v body.prev_w = body.w body.prev_q = body.q body.v += config.gravity * dt * (body.inv_mass == 0 ? 0 : 1) // special case for gravity, TODO body.x += body.v * dt // NOTE: figure out how this works https://fgiesen.wordpress.com/2012/08/24/quaternion-differentiation/ q := body.q w := body.w delta_rot := quaternion(x = w.x, y = w.y, z = w.z, w = 0) delta_rot = delta_rot * q q.x += 0.5 * dt * delta_rot.x q.y += 0.5 * dt * delta_rot.y q.z += 0.5 * dt * delta_rot.z q.w += 0.5 * dt * delta_rot.w q = lg.normalize0(q) body.q = q } } } xpbd_substep :: proc(sim_state: ^Sim_State, config: Solver_Config, dt: f32, inv_dt: f32) { xpbd_predict_positions(sim_state, config, dt) Body_Pair :: struct { a, b: int, } { tracy.ZoneN("simulate_step::solve_collisions") for i in 0 ..< len(sim_state.contact_container.contacts) { contact := &sim_state.contact_container.contacts[i] body, body2 := get_body(sim_state, contact.a), get_body(sim_state, contact.b) contact^ = Contact { a = contact.a, b = contact.b, prev_x_a = body.x, prev_x_b = body2.x, prev_q_a = body.q, prev_q_b = body2.q, manifold = contact.manifold, } manifold := &contact.manifold for point_idx in 0 ..< manifold.points_len { p1, p2 := manifold.points_a[point_idx], manifold.points_b[point_idx] p1, p2 = body_local_to_world(body, p1), body_local_to_world(body2, p2) p_diff_normal := lg.dot(p2 - p1, manifold.normal) separation := min(p_diff_normal, 0) lambda_norm, corr1, corr2, ok := calculate_constraint_params2( dt, body, body2, 0.00002, separation, -manifold.normal, p1, p2, ) if ok { contact.applied_normal_correction[point_idx] = -separation contact.applied_corrections += 1 contact.lambda_normal[point_idx] = lambda_norm apply_correction(body, corr1, p1) apply_correction(body2, corr2, p2) } } } } if false { tracy.ZoneN("simulate_step::static_friction") when false { context = context context.user_ptr = sim_state slice.sort_by( sim_state.contact_pairs[:sim_state.contact_pairs_len], proc(c1, c2: Contact) -> bool { sim_state := cast(^Sim_State)context.user_ptr find_min_contact_y :: proc( scene: ^Sim_State, c: Contact, ) -> ( min_contact_y: f32, ) { min_contact_y = max(f32) body_a, body_b := get_body(scene, c.a), get_body(scene, c.b) for i in 0 ..< c.manifold.points_len { min_contact_y = min( body_local_to_world(body_a, c.manifold.points_a[i]).y, body_local_to_world(body_b, c.manifold.points_b[i]).y, ) } return } min_y1 := find_min_contact_y(sim_state, c1) min_y2 := find_min_contact_y(sim_state, c2) return min_y1 > min_y2 }, ) } for &contact in sim_state.contact_container.contacts { manifold := contact.manifold body, body2 := get_body(sim_state, contact.a), get_body(sim_state, contact.b) for point_idx in 0 ..< manifold.points_len { lambda_norm := contact.lambda_normal[point_idx] if lambda_norm != 0 { p1 := body_local_to_world(body, manifold.points_a[point_idx]) p2 := body_local_to_world(body2, manifold.points_b[point_idx]) prev_p1 := body.prev_x + lg.quaternion_mul_vector3(body.prev_q, manifold.points_a[point_idx]) prev_p2 := body2.prev_x + lg.quaternion_mul_vector3(body2.prev_q, manifold.points_b[point_idx]) p_diff_tangent := (p1 - prev_p1) - (p2 - prev_p2) p_diff_tangent -= lg.dot(p_diff_tangent, manifold.normal) * manifold.normal tangent_diff_len := lg.length(p_diff_tangent) if tangent_diff_len > 0 { tangent_diff_normalized := p_diff_tangent / tangent_diff_len delta_lambda_tangent, corr1_tangent, corr2_tangent, ok_tangent := calculate_constraint_params2( dt, body, body2, 0, -tangent_diff_len, -tangent_diff_normalized, p1, p2, ) STATIC_FRICTION :: 0 if ok_tangent && delta_lambda_tangent < STATIC_FRICTION * lambda_norm { contact.applied_static_friction[point_idx] = true contact.lambda_tangent[point_idx] = delta_lambda_tangent apply_correction(body, corr1_tangent, p1) apply_correction(body2, corr2_tangent, p2) } } } } } } { tracy.ZoneN("simulate_step::suspension_constraints") for &v in sim_state.suspension_constraints { if v.alive { body := get_body(sim_state, v.body) pos := body_local_to_world(body, v.rel_pos) dir := body_local_to_world_vec(body, v.rel_dir) pos2 := pos + dir * v.rest v.hit_t, v.hit_point, v.hit = collision.intersect_segment_plane( {pos, pos2}, collision.plane_from_point_normal({}, collision.Vec3{0, 1, 0}), ) if v.hit { corr := pos - v.hit_point distance := lg.length(corr) corr = corr / distance if distance > 0 else 0 _ = apply_constraint_correction_unilateral( dt, body, v.compliance, error = distance - v.rest, error_gradient = corr, pos = pos, other_combined_inv_mass = 0, ) } } } } { // Compute new linear and angular velocities for _, i in sim_state.bodies_slice { body := &sim_state.bodies_slice[i] if body.alive { body_solve_velocity(body, body.prev_x, body.prev_q, inv_dt) } } } // Restituion if true { tracy.ZoneN("simulate_step::restitution") for &contact in sim_state.contact_container.contacts { manifold := &contact.manifold body, body2 := get_body(sim_state, contact.a), get_body(sim_state, contact.b) prev_q1, prev_q2 := body.prev_q, body2.prev_q for point_idx in 0 ..< manifold.points_len { if contact.lambda_normal[point_idx] == 0 { continue } prev_r1 := lg.quaternion_mul_vector3(prev_q1, manifold.points_a[point_idx]) prev_r2 := lg.quaternion_mul_vector3(prev_q2, manifold.points_b[point_idx]) r1 := lg.quaternion_mul_vector3(body.q, manifold.points_a[point_idx]) r2 := lg.quaternion_mul_vector3(body2.q, manifold.points_b[point_idx]) prev_v := (body.prev_v + lg.cross(body.prev_w, prev_r1)) - (body2.prev_v + lg.cross(body2.prev_w, prev_r2)) v := (body.v + lg.cross(body.w, r1)) - (body2.v + lg.cross(body2.w, r2)) prev_v_normal := lg.dot(prev_v, manifold.normal) v_normal := lg.dot(v, manifold.normal) RESTITUTION :: 0 restitution := f32(RESTITUTION) if abs(v_normal) <= 2 * abs(lg.dot(manifold.normal, -config.gravity) * dt) { restitution = 0 } delta_v := manifold.normal * (-v_normal + min(-RESTITUTION * prev_v_normal, 0)) w1 := get_body_inverse_mass(body, manifold.normal, r1 + body.x) w2 := get_body_inverse_mass(body2, manifold.normal, r2 + body2.x) w := w1 + w2 if w != 0 { p := delta_v / w body.v += p * body.inv_mass body2.v -= p * body2.inv_mass body.w += multiply_inv_intertia(body, lg.cross(r1, p)) body2.w -= multiply_inv_intertia(body2, lg.cross(r2, p)) } } } } if true { tracy.ZoneN("simulate_step::dynamic_friction") for &contact in sim_state.contact_container.contacts { manifold := &contact.manifold body1 := get_body(sim_state, contact.a) body2 := get_body(sim_state, contact.b) for point_idx in 0 ..< contact.manifold.points_len { if contact.applied_static_friction[point_idx] || contact.lambda_normal == 0 { continue } p1, p2 := body_local_to_world(body1, manifold.points_a[point_idx]), body_local_to_world(body2, manifold.points_b[point_idx]) r1, r2 := p1 - body1.x, p2 - body2.x v1 := body_velocity_at_point(body1, p1) v2 := body_velocity_at_point(body2, p2) v := v1 - v2 v_normal := lg.dot(manifold.normal, v) * manifold.normal v_tangent := v - v_normal DYNAMIC_FRICTION :: 1 v_tangent_len := lg.length(v_tangent) if v_tangent_len > 0 { v_tangent_norm := v_tangent / v_tangent_len w1, w2 := get_body_inverse_mass(body1, v_tangent_norm, p1), get_body_inverse_mass(body2, v_tangent_norm, p2) w := w1 + w2 if w > 0 { delta_v := -v_tangent_norm * min( dt * DYNAMIC_FRICTION * abs(contact.lambda_normal[point_idx] / (dt * dt)), v_tangent_len / w, ) // delta_v_norm := lg.normalize0(delta_v) p := delta_v body1.v += p * body1.inv_mass body2.v -= p * body2.inv_mass body1.w += multiply_inv_intertia(body1, lg.cross(r1, p)) body2.w -= multiply_inv_intertia(body2, lg.cross(r2, p)) } } } } } // Solve suspension velocity for _, i in sim_state.suspension_constraints { v := &sim_state.suspension_constraints_slice[i] if v.alive { body := get_body(sim_state, v.body) if body.alive && v.hit { prev_x, prev_q := body.prev_x, body.prev_q wheel_world_pos := body_local_to_world(body, v.rel_pos) prev_wheel_world_pos := prev_x + lg.quaternion_mul_vector3(prev_q, v.rel_pos) vel_3d := (wheel_world_pos - prev_wheel_world_pos) * inv_dt dir := body_local_to_world_vec(body, v.rel_dir) // Spring damping if true { vel := lg.dot(vel_3d, dir) damping := -vel * min(v.damping * dt, 1) _ = apply_constraint_correction_unilateral( dt, body, 0, error = damping, error_gradient = -dir, pos = wheel_world_pos, ) body_solve_velocity(body, body.prev_x, body.prev_q, inv_dt) } // Drive forces if true { total_impulse := v.drive_impulse - v.brake_impulse forward := body_local_to_world_vec(body, Vec3{0, 0, 1}) _ = apply_constraint_correction_unilateral( dt, body, 0, total_impulse * dt * dt, -forward, wheel_world_pos, ) body_solve_velocity(body, body.prev_x, body.prev_q, inv_dt) } // Lateral friction if true { vel_contact := body_velocity_at_point(body, v.hit_point) right := wheel_get_right_vec(body, v) lateral_vel := lg.dot(right, vel_contact) friction := f32(0.5) impulse := -lateral_vel * friction corr := right * impulse * dt v.applied_impulse.x = impulse apply_correction(body, corr, v.hit_point) body_solve_velocity(body, body.prev_x, body.prev_q, inv_dt) } } } } } pgs_substep :: proc(sim_state: ^Sim_State, config: Solver_Config, dt: f32, inv_dt: f32) { for i in 0 ..< len(sim_state.bodies_slice) { body := &sim_state.bodies_slice[i] if body.alive { body.v += config.gravity * dt * (body.inv_mass == 0 ? 0 : 1) // special case for gravity, TODO } } // TODO: apply impulses // for i in 0 ..< len(sim_state.contact_pairs) { // contact_pair := &sim_state.contact_pairs[i] // // } for i in 0 ..< len(sim_state.bodies_slice) { body := &sim_state.bodies_slice[i] if body.alive { body.x += body.v * dt // NOTE: figure out how this works https://fgiesen.wordpress.com/2012/08/24/quaternion-differentiation/ q := body.q w := body.w delta_rot := quaternion(x = w.x, y = w.y, z = w.z, w = 0) delta_rot = delta_rot * q q.x += 0.5 * dt * delta_rot.x q.y += 0.5 * dt * delta_rot.y q.z += 0.5 * dt * delta_rot.z q.w += 0.5 * dt * delta_rot.w q = lg.normalize0(q) body.q = q } } } simulate_step :: proc(scene: ^Scene, sim_state: ^Sim_State, config: Solver_Config) { tracy.Zone() substeps := config.substreps_minus_one + 1 dt := config.timestep / f32(substeps) inv_dt := 1.0 / dt tlas := build_tlas(sim_state, config) find_new_contacts(sim_state, &tlas) { tracy.ZoneN("simulate_step::remove_invalid_contacts") i := 0 for i < len(sim_state.contact_container.contacts) { contact := sim_state.contact_container.contacts[i] aabb_a := tlas.body_aabbs[int(contact.a) - 1] aabb_b := tlas.body_aabbs[int(contact.b) - 1] if !bvh.test_aabb_vs_aabb(aabb_a, aabb_b) { removed_pair := make_contact_pair(i32(contact.a) - 1, i32(contact.b) - 1) delete_key(&sim_state.contact_container.lookup, removed_pair) unordered_remove_soa(&sim_state.contact_container.contacts, i) if i < len(sim_state.contact_container.contacts) { moved_contact := &sim_state.contact_container.contacts[i] moved_pair := make_contact_pair( i32(moved_contact.a) - 1, i32(moved_contact.b) - 1, ) sim_state.contact_container.lookup[moved_pair] = i32(i) } } else { i += 1 } } } update_contacts(sim_state) Solver :: enum { XPBD, PGS, } solver := Solver.XPBD switch solver { case .XPBD: for _ in 0 ..< substeps { xpbd_substep(sim_state, config, dt, inv_dt) } case .PGS: for _ in 0 ..< substeps { pgs_substep(sim_state, config, dt, inv_dt) } } } body_solve_velocity :: #force_inline proc( body: Body_Ptr, prev_x: Vec3, prev_q: Quat, inv_dt: f32, ) { body.v = (body.x - prev_x) * inv_dt delta_q := body.q * lg.quaternion_inverse(prev_q) body.w = Vec3{delta_q.x, delta_q.y, delta_q.z} * 2.0 * inv_dt if delta_q.w < 0 { body.w = -body.w } } calculate_constraint_params1 :: proc( dt: f32, body: Body_Ptr, compliance: f32, error: f32, error_gradient: Vec3, pos: Vec3, other_combined_inv_mass: f32, ) -> ( lambda: f32, w: f32, correction: Vec3, ok: bool, ) { if error == 0 { return } w = get_body_inverse_mass(body, error_gradient, pos) w += other_combined_inv_mass if w == 0 { return } ok = true alpha := compliance / dt / dt lambda = -error / (w + alpha) correction = -error_gradient * -lambda return } calculate_constraint_params2 :: proc( dt: f32, body1: Body_Ptr, body2: Body_Ptr, compliance: f32, error: f32, error_gradient: Vec3, pos1: Vec3, pos2: Vec3, ) -> ( lambda: f32, correction1: Vec3, correction2: Vec3, ok: bool, ) { if error == 0 { return } w := get_body_inverse_mass(body1, -error_gradient, pos1) w += get_body_inverse_mass(body2, error_gradient, pos2) if w == 0 { return } ok = true alpha := compliance / dt / dt lambda = -error / (w + alpha) correction1 = -error_gradient * -lambda correction2 = error_gradient * -lambda return } apply_constraint_correction_unilateral :: proc( dt: f32, body: Body_Ptr, compliance: f32, error: f32, error_gradient: Vec3, pos: Vec3, other_combined_inv_mass: f32 = 0, ) -> ( lambda: f32, ) { w: f32 correction: Vec3 ok: bool lambda, w, correction, ok = calculate_constraint_params1( dt, body, compliance, error, error_gradient, pos, other_combined_inv_mass, ) if ok { apply_correction(body, correction, pos) } return } multiply_inv_intertia :: proc(body: Body_Ptr, vec: Vec3) -> (result: Vec3) { q := body.q inv_q := lg.quaternion_normalize0(lg.quaternion_inverse(q)) result = lg.quaternion_mul_vector3(inv_q, vec) result *= body.inv_inertia_tensor result = lg.quaternion_mul_vector3(q, result) return result } apply_correction :: proc(body: Body_Ptr, corr: Vec3, pos: Vec3) { // rl.DrawSphereWires(pos, 0.5, 4, 4, rl.BLUE) // rl.DrawLine3D(pos, pos + corr, rl.BLUE) body.x += corr * body.inv_mass q := body.q inv_q := lg.quaternion_normalize0(lg.quaternion_inverse(q)) delta_omega := pos - body.x delta_omega = lg.cross(delta_omega, corr) delta_omega = lg.quaternion_mul_vector3(inv_q, delta_omega) delta_omega *= body.inv_inertia_tensor delta_omega = lg.quaternion_mul_vector3(q, delta_omega) delta_rot := quaternion(x = delta_omega.x, y = delta_omega.y, z = delta_omega.z, w = 0) delta_rot *= q q.x += 0.5 * delta_rot.x q.y += 0.5 * delta_rot.y q.z += 0.5 * delta_rot.z q.w += 0.5 * delta_rot.w q = lg.normalize0(q) body.q = q } get_body_inverse_mass :: proc(body: Body_Ptr, normal, pos: Vec3) -> f32 { q := body.q inv_q := lg.quaternion_normalize0(lg.quaternion_inverse(q)) rn := pos - body.x rn = lg.cross(rn, normal) rn = lg.quaternion_mul_vector3(inv_q, rn) w := lg.dot(rn, rn * body.inv_inertia_tensor) w += body.inv_mass return w }