package game import "base:builtin" import "core:math" import lg "core:math/linalg" import rl "vendor:raylib" import "vendor:raylib/rlgl" SPLINE_SUBDIVS_U :: 1 SPLINE_SUBDIVS_V :: 16 ROAD_WIDTH :: 8.0 CATMULL_ROM_ALPHA :: 1.0 CATMULL_ROM_TENSION :: 0.0 calculate_spline_ctrl_rotations :: proc( points: []rl.Vector3, allocator := context.allocator, ) -> []lg.Quaternionf32 { points_len := len(points) ctrl_rotations := make([]lg.Quaternionf32, points_len, allocator) // Normals for control points for i in 0 ..< points_len - 1 { pos := points[i] tangent := lg.normalize0(points[i + 1] - pos) bitangent := lg.normalize0(lg.cross(tangent, rl.Vector3{0, 1, 0})) normal := lg.normalize0(lg.cross(bitangent, tangent)) rotation_matrix: lg.Matrix3f32 rotation_matrix[0], rotation_matrix[1], rotation_matrix[2] = bitangent, normal, -tangent ctrl_rotations[i] = lg.quaternion_from_matrix3(rotation_matrix) if points_len >= 2 { ctrl_rotations[points_len - 1] = ctrl_rotations[points_len - 2] } } return ctrl_rotations } Interpolated_Point :: struct { pos: rl.Vector3, normal: rl.Vector3, } sample_spline :: proc(points: []rl.Vector3, t: f32) -> rl.Vector3 { points_len := len(points) if points_len >= 2 { t_mul_len := math.saturate(t) * f32(len(points)) i := int(t_mul_len) frac_t := t_mul_len - f32(i) extended_start := points[0] + (points[0] - points[1]) extended_end := points[points_len - 1] + points[points_len - 1] - points[points_len - 2] extended_end2 := extended_end + points[points_len - 1] - points[points_len - 2] prev := i > 0 ? points[i - 1] : extended_start current := points[i] next := i < points_len - 1 ? points[i + 1] : extended_end next2 := i < points_len - 2 ? points[i + 2] : extended_end2 a, b, c, d := catmull_rom_coefs( prev, current, next, next2, CATMULL_ROM_ALPHA, CATMULL_ROM_TENSION, ) return catmull_rom(a, b, c, d, frac_t) } else if len(points) == 1 { return points[0] } return {} } calculate_spline_interpolated_points :: proc( points: []rl.Vector3, allocator := context.allocator, ) -> []Interpolated_Point { points_len := len(points) ctrl_rotations := calculate_spline_ctrl_rotations(points, context.temp_allocator) if points_len >= 2 { interpolated_points := make( []Interpolated_Point, (points_len - 1) * SPLINE_SUBDIVS_V + 1, allocator, ) extended_start := points[0] + (points[0] - points[1]) extended_end := points[points_len - 1] + points[points_len - 1] - points[points_len - 2] extended_end2 := extended_end + points[points_len - 1] - points[points_len - 2] for i in 0 ..< points_len - 1 { prev := i > 0 ? points[i - 1] : extended_start current := points[i] next := i < points_len - 1 ? points[i + 1] : extended_end next2 := i < points_len - 2 ? points[i + 2] : extended_end2 cur_frame := ctrl_rotations[i] next_frame := ctrl_rotations[i + 1] a, b, c, d := catmull_rom_coefs( prev, current, next, next2, CATMULL_ROM_ALPHA, CATMULL_ROM_TENSION, ) v_dt := 1.0 / f32(SPLINE_SUBDIVS_V) for v_index in 0 ..< SPLINE_SUBDIVS_V { v_t := f32(v_index) * v_dt out_point := &interpolated_points[i * SPLINE_SUBDIVS_V + v_index] rotation := lg.quaternion_slerp(cur_frame, next_frame, v_t) normal := lg.matrix3_from_quaternion(rotation)[1] out_point.pos = catmull_rom(a, b, c, d, v_t) out_point.normal = normal } } interpolated_points[len(interpolated_points) - 1] = interpolated_points[len(interpolated_points) - 2] return interpolated_points } return nil } debug_draw_spline :: proc(interpolated_points: []Interpolated_Point) { rlgl.Begin(rlgl.LINES) defer rlgl.End() for i in 0 ..< len(interpolated_points) - 1 { cur, next := interpolated_points[i], interpolated_points[i + 1] tangent := lg.normalize0(next.pos - cur.pos) normal := interpolated_points[i].normal bitangent := lg.cross(tangent, normal) rlgl.Color4ub(255, 255, 255, 255) rlgl_vertex3v(cur.pos) rlgl_vertex3v(next.pos) rlgl.Color4ub(255, 0, 0, 255) rlgl_vertex3v(cur.pos) rlgl_vertex3v(cur.pos + tangent) rlgl.Color4ub(0, 255, 0, 255) rlgl_vertex3v(cur.pos) rlgl_vertex3v(cur.pos + bitangent * ROAD_WIDTH) rlgl.Color4ub(0, 0, 255, 255) rlgl_vertex3v(cur.pos) rlgl_vertex3v(cur.pos + normal) } } debug_draw_spline_mesh :: proc(interpolated_points: []Interpolated_Point) { rlgl.Begin(rlgl.TRIANGLES) defer rlgl.End() for i in 0 ..< len(interpolated_points) - 1 { cur, next := interpolated_points[i], interpolated_points[i + 1] tangent := lg.normalize0(next.pos - cur.pos) normal := interpolated_points[i].normal bitangent := lg.normalize0(lg.cross(tangent, normal)) next_tangent: rl.Vector3 if i < len(interpolated_points) - 2 { next2 := interpolated_points[i + 2] next_tangent = next2.pos - next.pos } else { next_tangent = tangent } next_normal := interpolated_points[i + 1].normal next_bitangent := lg.normalize0(lg.cross(next_tangent, next_normal)) u_dt := 1.0 / f32(SPLINE_SUBDIVS_U) for u in 0 ..< SPLINE_SUBDIVS_U { u_t := u_dt * f32(u) u_t2 := u_t + u_dt // [-1, 1] u_t = u_t * 2 - 1 u_t2 = u_t2 * 2 - 1 u_t *= ROAD_WIDTH u_t2 *= ROAD_WIDTH p1 := cur.pos + bitangent * u_t p2 := cur.pos + bitangent * u_t2 p3 := next.pos + next_bitangent * u_t p4 := next.pos + next_bitangent * u_t2 rlgl_color3v(normal * 0.5 + 0.5) rlgl_vertex3v(p1) rlgl_vertex3v(p2) rlgl_vertex3v(p3) rlgl_color3v(next_normal * 0.5 + 0.5) rlgl_vertex3v(p2) rlgl_vertex3v(p4) rlgl_vertex3v(p3) } } }