package physics import "collision" import "core:fmt" import "core:math" import lg "core:math/linalg" import "game:halfedge" import rl "vendor:raylib" _ :: math _ :: fmt Solver_Config :: struct { // Will automatically do fixed timestep timestep: f32, gravity: rl.Vector3, substreps_minus_one: i32, } Solver_State :: struct { accumulated_time: f32, // Incremented when simulate is called (not simulate_step) simulation_frame: u32, // Number of immediate bodies referenced this frame num_referenced_bodies: i32, num_referenced_suspension_constraints: i32, immedate_bodies: map[u32]Immedate_State(Body_Handle), immediate_suspension_constraints: map[u32]Immedate_State(Suspension_Constraint_Handle), } destroy_solver_state :: proc(state: ^Solver_State) { delete(state.immedate_bodies) delete(state.immediate_suspension_constraints) } Immedate_State :: struct($T: typeid) { handle: T, // When was this referenced last time (frame number) last_ref: u32, } MAX_STEPS :: 10 // Outer simulation loop for fixed timestepping simulate :: proc(scene: ^Scene, state: ^Solver_State, config: Solver_Config, dt: f32) { assert(config.timestep > 0) prune_immediate(scene, state) state.accumulated_time += dt num_steps := 0 for state.accumulated_time >= config.timestep { num_steps += 1 state.accumulated_time -= config.timestep if num_steps < MAX_STEPS { simulate_step(scene, config) } } state.simulation_frame += 1 state.num_referenced_bodies = 0 state.num_referenced_suspension_constraints = 0 } Body_Sim_State :: struct { prev_x: rl.Vector3, prev_q: rl.Quaternion, } GLOBAL_PLANE :: collision.Plane { normal = rl.Vector3{0, 1, 0}, dist = 0, } Contact_Pair :: struct { a, b: Body_Handle, manifold: collision.Contact_Manifold, } simulate_step :: proc(scene: ^Scene, config: Solver_Config) { body_states := make([]Body_Sim_State, len(scene.bodies), context.temp_allocator) scene.contact_pairs_len = 0 substeps := config.substreps_minus_one + 1 dt := config.timestep / f32(substeps) inv_dt := 1.0 / dt for _ in 0 ..< substeps { // Integrate positions and rotations for &body, i in scene.bodies { if body.alive { body_states[i].prev_x = body.x body.v += config.gravity * dt * (body.inv_mass == 0 ? 0 : 1) // special case for gravity, TODO body.x += body.v * dt body_states[i].prev_q = body.q // NOTE: figure out how this works https://fgiesen.wordpress.com/2012/08/24/quaternion-differentiation/ q := body.q w := body.w delta_rot := quaternion(x = w.x, y = w.y, z = w.z, w = 0) delta_rot = delta_rot * q q.x += 0.5 * dt * delta_rot.x q.y += 0.5 * dt * delta_rot.y q.z += 0.5 * dt * delta_rot.z q.w += 0.5 * dt * delta_rot.w q = lg.normalize0(q) body.q = q } } Body_Pair :: struct { a, b: int, } handled_pairs := make_map(map[Body_Pair]bool, context.temp_allocator) for _, i in scene.bodies { body := &scene.bodies_slice[i] if body.alive { for _, j in scene.bodies { body2 := &scene.bodies_slice[j] if i != j && body2.alive && !handled_pairs[{a = min(i, j), b = max(i, j)}] { s1, s2 := body.shape.(Shape_Box), body2.shape.(Shape_Box) box1 := collision.box_to_convex( collision.Box{rad = s1.size * 0.5}, context.temp_allocator, ) box2 := collision.box_to_convex( collision.Box{rad = s2.size * 0.5}, context.temp_allocator, ) mat1 := lg.matrix4_translate(body.x) * lg.matrix4_from_quaternion(body.q) mat2 := lg.matrix4_translate(body2.x) * lg.matrix4_from_quaternion(body2.q) halfedge.transform_mesh(&box1, mat1) halfedge.transform_mesh(&box2, mat2) manifold, collision := collision.convex_vs_convex_sat(box1, box2) if collision { scene.contact_pairs[scene.contact_pairs_len] = Contact_Pair { a = Body_Handle(i + 1), b = Body_Handle(j + 1), manifold = manifold, } scene.contact_pairs_len += 1 points_a_local, points_b_local: [4]rl.Vector3 for point_idx in 0 ..< manifold.points_len { points_a_local[point_idx] = body_world_to_local( body, manifold.points_a[point_idx], ) points_b_local[point_idx] = body_world_to_local( body2, manifold.points_b[point_idx], ) } for point_idx in 0 ..< manifold.points_len { p1, p2 := points_a_local[point_idx], points_b_local[point_idx] p1, p2 = body_local_to_world(body, p1), body_local_to_world(body2, p2) body1_inv_mass := get_body_inverse_mass(body, manifold.normal, p1) body2_inv_mass := get_body_inverse_mass(body2, manifold.normal, p2) diff := p2 - p1 length := lg.length(diff) if length != 0 { diff /= length } separation := min(lg.dot(p2 - p1, manifold.normal), 0) handled_pairs[{a = min(i, j), b = max(i, j)}] = true apply_constraint_correction_unilateral( dt, body, 0, -separation, -manifold.normal, p1, body2_inv_mass, ) apply_constraint_correction_unilateral( dt, body2, 0, -separation, manifold.normal, p2, body1_inv_mass, ) } } } } } } for &v in scene.suspension_constraints { if v.alive { body := get_body(scene, v.body) pos := body_local_to_world(body, v.rel_pos) dir := body_local_to_world_vec(body, v.rel_dir) pos2 := pos + dir * v.rest v.hit_t, v.hit_point, v.hit = collision.intersect_segment_plane( {pos, pos2}, collision.plane_from_point_normal({}, collision.Vec3{0, 1, 0}), ) if v.hit { corr := v.hit_point - pos distance := lg.length(corr) corr = corr / distance if distance > 0 else 0 apply_constraint_correction_unilateral( dt, body, v.compliance, error = distance - v.rest, error_gradient = corr, pos = pos, other_combined_inv_mass = 0, ) } } } solve_velocities(scene, body_states, inv_dt) // for pair in scene.contact_pairs[:scene.contact_pairs_len] { // pair.a // } // Solve suspension velocity for _, i in scene.suspension_constraints { v := &scene.suspension_constraints_slice[i] if v.alive { body_idx := int(v.body) - 1 body := get_body(scene, v.body) if body.alive && v.hit { prev_x, prev_q := body_states[body_idx].prev_x, body_states[body_idx].prev_q wheel_world_pos := body_local_to_world(body, v.rel_pos) prev_wheel_world_pos := prev_x + lg.quaternion_mul_vector3(prev_q, v.rel_pos) vel_3d := (wheel_world_pos - prev_wheel_world_pos) * inv_dt dir := body_local_to_world_vec(body, v.rel_dir) body_state := body_states[i32(v.body) - 1] // Spring damping if true { vel := lg.dot(vel_3d, dir) damping := -vel * min(v.damping * dt, 1) apply_constraint_correction_unilateral( dt, body, 0, error = damping, error_gradient = dir, pos = wheel_world_pos, ) body_solve_velocity(body, body_state, inv_dt) } // Drive forces if true { total_impulse := v.drive_impulse - v.brake_impulse forward := body_local_to_world_vec(body, rl.Vector3{0, 0, 1}) apply_constraint_correction_unilateral( dt, body, 0, total_impulse * dt * dt, forward, wheel_world_pos, ) body_solve_velocity(body, body_state, inv_dt) } // Lateral friction if true { local_contact_pos := v.hit_point - body.x vel_contact := body_velocity_at_local_point(body, local_contact_pos) right := wheel_get_right_vec(body, v) lateral_vel := lg.dot(right, vel_contact) friction := f32(0.5) impulse := -lateral_vel * friction corr := right * impulse * dt v.applied_impulse.x = impulse apply_correction(body, corr, v.hit_point) body_solve_velocity(body, body_state, inv_dt) } } } } } } solve_velocities :: proc(scene: ^Scene, body_states: []Body_Sim_State, inv_dt: f32) { // Compute new linear and angular velocities for _, i in scene.bodies_slice { body := &scene.bodies_slice[i] if body.alive { body_solve_velocity(body, body_states[i], inv_dt) } } } body_solve_velocity :: #force_inline proc(body: Body_Ptr, state: Body_Sim_State, inv_dt: f32) { body.v = (body.x - state.prev_x) * inv_dt delta_q := body.q * lg.quaternion_inverse(state.prev_q) body.w = rl.Vector3{delta_q.x, delta_q.y, delta_q.z} * 2.0 * inv_dt if delta_q.w < 0 { body.w = -body.w } } apply_constraint_correction_unilateral :: proc( dt: f32, body: Body_Ptr, compliance: f32, error: f32, error_gradient: rl.Vector3, pos: rl.Vector3, other_combined_inv_mass: f32 = 0, ) { if error == 0 { return } w := get_body_inverse_mass(body, error_gradient, pos) w += other_combined_inv_mass if w == 0 { return } alpha := compliance / dt / dt lambda := -error / (w + alpha) delta_pos := error_gradient * -lambda apply_correction(body, delta_pos, pos) } apply_correction :: proc(body: Body_Ptr, corr: rl.Vector3, pos: rl.Vector3) { body.x += corr * body.inv_mass q := body.q inv_q := lg.quaternion_normalize0(lg.quaternion_inverse(q)) delta_omega := pos - body.x delta_omega = lg.cross(delta_omega, corr) delta_omega = lg.quaternion_mul_vector3(inv_q, delta_omega) delta_omega *= body.inv_inertia_tensor delta_omega = lg.quaternion_mul_vector3(q, delta_omega) delta_rot := quaternion(x = delta_omega.x, y = delta_omega.y, z = delta_omega.z, w = 0) delta_rot *= q q.x += 0.5 * delta_rot.x q.y += 0.5 * delta_rot.y q.z += 0.5 * delta_rot.z q.w += 0.5 * delta_rot.w q = lg.normalize0(q) body.q = q } get_body_inverse_mass :: proc(body: Body_Ptr, normal, pos: rl.Vector3) -> f32 { q := body.q inv_q := lg.quaternion_normalize0(lg.quaternion_inverse(q)) rn := pos - body.x rn = lg.cross(rn, normal) rn = lg.quaternion_mul_vector3(inv_q, rn) w := rn.x * rn.x * body.inv_inertia_tensor.x + rn.y * rn.y * body.inv_inertia_tensor.y + rn.z * rn.z * body.inv_inertia_tensor.z w += body.inv_mass return w }