gutter_runner/game/physics/simulation.odin

294 lines
7.3 KiB
Odin

package physics
import "collision"
import "core:fmt"
import "core:math"
import lg "core:math/linalg"
import rl "vendor:raylib"
_ :: math
_ :: fmt
Solver_Config :: struct {
// Will automatically do fixed timestep
timestep: f32,
gravity: rl.Vector3,
substreps_minus_one: i32,
}
Solver_State :: struct {
accumulated_time: f32,
// Incremented when simulate is called (not simulate_step)
simulation_frame: u32,
// Number of immediate bodies referenced this frame
num_referenced_bodies: i32,
num_referenced_suspension_constraints: i32,
immedate_bodies: map[u32]Immedate_State(Body_Handle),
immediate_suspension_constraints: map[u32]Immedate_State(Suspension_Constraint_Handle),
}
destroy_solver_state :: proc(state: ^Solver_State) {
delete(state.immedate_bodies)
delete(state.immediate_suspension_constraints)
}
Immedate_State :: struct($T: typeid) {
handle: T,
// When was this referenced last time (frame number)
last_ref: u32,
}
// Outer simulation loop for fixed timestepping
simulate :: proc(scene: ^Scene, state: ^Solver_State, config: Solver_Config, dt: f32) {
assert(config.timestep > 0)
prune_immediate(scene, state)
state.accumulated_time += dt
num_steps := 0
for state.accumulated_time >= config.timestep {
num_steps += 1
state.accumulated_time -= config.timestep
simulate_step(scene, config)
}
state.simulation_frame += 1
state.num_referenced_bodies = 0
state.num_referenced_suspension_constraints = 0
}
Body_Sim_State :: struct {
prev_x: rl.Vector3,
prev_q: rl.Quaternion,
}
simulate_step :: proc(scene: ^Scene, config: Solver_Config) {
body_states := make([]Body_Sim_State, len(scene.bodies), context.temp_allocator)
substeps := config.substreps_minus_one + 1
dt := config.timestep / f32(substeps)
inv_dt := 1.0 / dt
for _ in 0 ..< substeps {
// Integrate positions and rotations
for &body, i in scene.bodies {
if body.alive {
body_states[i].prev_x = body.x
body.v += config.gravity * dt
body.x += body.v * dt
body_states[i].prev_q = body.q
// TODO: Probably can do it using built in quaternion math but I have no idea how it works
// NOTE: figure out how this works https://fgiesen.wordpress.com/2012/08/24/quaternion-differentiation/
q := body.q
w := body.w
delta_rot := quaternion(x = w.x, y = w.y, z = w.z, w = 0)
delta_rot = delta_rot * q
q.x += 0.5 * dt * delta_rot.x
q.y += 0.5 * dt * delta_rot.y
q.z += 0.5 * dt * delta_rot.z
q.w += 0.5 * dt * delta_rot.w
q = lg.normalize0(q)
body.q = q
}
}
for &v in scene.suspension_constraints {
if v.alive {
body := get_body(scene, v.body)
pos := body_local_to_world(body, v.rel_pos)
dir := body_local_to_world_vec(body, v.rel_dir)
pos2 := pos + dir * v.rest
v.hit_t, v.hit_point, v.hit = collision.intersect_segment_plane(
{pos, pos2},
collision.plane_from_point_normal({}, collision.Vec3{0, 1, 0}),
)
if v.hit {
corr := v.hit_point - pos
distance := lg.length(corr)
corr = corr / distance if distance > 0 else 0
apply_constraint_correction_unilateral(
dt,
body,
v.compliance,
error = distance - v.rest,
error_gradient = corr,
pos = pos,
other_combined_inv_mass = 0,
)
}
}
}
solve_velocities(scene, body_states, inv_dt)
// Solve suspension velocity
for _, i in scene.suspension_constraints {
v := &scene.suspension_constraints_slice[i]
if v.alive {
body_idx := int(v.body) - 1
body := get_body(scene, v.body)
if body.alive && v.hit {
prev_x, prev_q := body_states[body_idx].prev_x, body_states[body_idx].prev_q
wheel_world_pos := body_local_to_world(body, v.rel_pos)
prev_wheel_world_pos := prev_x + lg.quaternion_mul_vector3(prev_q, v.rel_pos)
vel_3d := (wheel_world_pos - prev_wheel_world_pos) * inv_dt
dir := body_local_to_world_vec(body, v.rel_dir)
body_state := body_states[i32(v.body) - 1]
// Spring damping
if true {
vel := lg.dot(vel_3d, dir)
damping := -vel * min(v.damping * dt, 1)
apply_constraint_correction_unilateral(
dt,
body,
0,
error = damping,
error_gradient = dir,
pos = wheel_world_pos,
)
body_solve_velocity(body, body_state, inv_dt)
}
// Drive forces
if true {
total_impulse := v.drive_impulse - v.brake_impulse
forward := body_local_to_world_vec(body, rl.Vector3{0, 0, 1})
apply_constraint_correction_unilateral(
dt,
body,
0,
total_impulse * dt * dt,
forward,
wheel_world_pos,
)
body_solve_velocity(body, body_state, inv_dt)
}
// Lateral friction
if true {
local_contact_pos := v.hit_point - body.x
vel_contact := body_velocity_at_local_point(body, local_contact_pos)
right := wheel_get_right_vec(body, v)
lateral_vel := lg.dot(right, vel_contact)
friction := f32(0.5)
impulse := -lateral_vel * friction
corr := right * impulse * dt
v.applied_impulse.x = impulse
apply_correction(body, corr, v.hit_point)
body_solve_velocity(body, body_state, inv_dt)
}
}
}
}
}
}
solve_velocities :: proc(scene: ^Scene, body_states: []Body_Sim_State, inv_dt: f32) {
// Compute new linear and angular velocities
for _, i in scene.bodies_slice {
body := &scene.bodies_slice[i]
if body.alive {
body_solve_velocity(body, body_states[i], inv_dt)
}
}
}
body_solve_velocity :: #force_inline proc(body: Body_Ptr, state: Body_Sim_State, inv_dt: f32) {
body.v = (body.x - state.prev_x) * inv_dt
delta_q := body.q * lg.quaternion_inverse(state.prev_q)
body.w = rl.Vector3{delta_q.x, delta_q.y, delta_q.z} * 2.0 * inv_dt
if delta_q.w < 0 {
body.w = -body.w
}
}
apply_constraint_correction_unilateral :: proc(
dt: f32,
body: Body_Ptr,
compliance: f32,
error: f32,
error_gradient: rl.Vector3,
pos: rl.Vector3,
other_combined_inv_mass: f32 = 0,
) {
if error == 0 {
return
}
w := get_body_inverse_mass(body, error_gradient, pos)
w += other_combined_inv_mass
if w == 0 {
return
}
alpha := compliance / dt / dt
lambda := -error / (w + alpha)
delta_pos := error_gradient * -lambda
apply_correction(body, delta_pos, pos)
}
apply_correction :: proc(body: Body_Ptr, corr: rl.Vector3, pos: rl.Vector3) {
body.x += corr * body.inv_mass
q := body.q
inv_q := lg.quaternion_normalize0(lg.quaternion_inverse(q))
delta_omega := pos - body.x
delta_omega = lg.cross(delta_omega, corr)
delta_omega = lg.quaternion_mul_vector3(inv_q, delta_omega)
delta_omega *= body.inv_inertia_tensor
delta_omega = lg.quaternion_mul_vector3(q, delta_omega)
delta_rot := quaternion(x = delta_omega.x, y = delta_omega.y, z = delta_omega.z, w = 0)
delta_rot *= q
q.x += 0.5 * delta_rot.x
q.y += 0.5 * delta_rot.y
q.z += 0.5 * delta_rot.z
q.w += 0.5 * delta_rot.w
q = lg.normalize0(q)
body.q = q
}
get_body_inverse_mass :: proc(body: Body_Ptr, normal, pos: rl.Vector3) -> f32 {
q := body.q
inv_q := lg.quaternion_normalize0(lg.quaternion_inverse(q))
rn := pos - body.x
rn = lg.cross(rn, normal)
rn = lg.quaternion_mul_vector3(inv_q, rn)
w :=
rn.x * rn.x * body.inv_inertia_tensor.x +
rn.y * rn.y * body.inv_inertia_tensor.y +
rn.z * rn.z * body.inv_inertia_tensor.z
w += body.inv_mass
return w
}