gutter_runner/game/assets/assets.odin

455 lines
10 KiB
Odin

package assets
import "core:c"
import "core:log"
import "core:math"
import lg "core:math/linalg"
import "core:os/os2"
import "core:strconv"
import "game:debug"
import "game:halfedge"
import "game:physics/bvh"
import "game:physics/collision"
import "libs:tracy"
import rl "vendor:raylib"
import "vendor:raylib/rlgl"
Loaded_Texture :: struct {
texture: rl.Texture2D,
modtime: c.long,
}
Loaded_Model :: struct {
model: rl.Model,
modtime: c.long,
}
Loaded_BVH :: struct {
// AABB of all bvhs
aabb: bvh.AABB,
// BVH for each mesh in a model
bvhs: []bvh.BVH,
modtime: c.long,
}
Loaded_Convex :: struct {
mesh: collision.Convex,
center_of_mass: rl.Vector3,
}
destroy_loaded_bvh :: proc(loaded_bvh: Loaded_BVH) {
tracy.Zone()
for &mesh_bvh in loaded_bvh.bvhs {
bvh.destroy_bvh(&mesh_bvh)
}
delete(loaded_bvh.bvhs)
}
Asset_Manager :: struct {
textures: map[cstring]Loaded_Texture,
models: map[cstring]Loaded_Model,
bvhs: map[cstring]Loaded_BVH,
}
get_texture :: proc(assetman: ^Asset_Manager, path: cstring) -> rl.Texture2D {
tracy.Zone()
modtime := rl.GetFileModTime(path)
existing, ok := assetman.textures[path]
if ok && existing.modtime == modtime {
return existing.texture
}
if ok {
rl.UnloadTexture(existing.texture)
delete_key(&assetman.textures, path)
log.infof("deleted texture %s. New textures len: %d", path, len(assetman.textures))
}
loaded := rl.LoadTexture(path)
if rl.IsTextureValid(loaded) {
assetman.textures[path] = {
texture = loaded,
modtime = modtime,
}
return loaded
} else {
return rl.Texture2D{}
}
}
get_model_ex :: proc(
assetman: ^Asset_Manager,
path: cstring,
ref_modtime: c.long = 0, // will check reload status using reference load time. When 0 reloaded will be true only if this call triggered reload
) -> (
model: rl.Model,
modtime: c.long,
reloaded: bool,
) {
tracy.Zone()
new_modtime := rl.GetFileModTime(path)
existing, ok := assetman.models[path]
if ok && existing.modtime == new_modtime {
return existing.model,
existing.modtime,
ref_modtime == 0 ? false : existing.modtime != ref_modtime
}
if ok {
rl.UnloadModel(existing.model)
delete_key(&assetman.textures, path)
log.infof("deleted model %s. New models len: %d", path, len(assetman.textures))
}
loaded := rl.LoadModel(path)
if rl.IsModelValid(loaded) {
assetman.models[path] = {
model = loaded,
modtime = new_modtime,
}
return loaded, new_modtime, true
} else {
return rl.Model{}, 0, true
}
}
get_model :: proc(assetman: ^Asset_Manager, path: cstring) -> rl.Model {
model, _, _ := get_model_ex(assetman, path)
return model
}
null_bvhs: []bvh.BVH
get_bvh :: proc(assetman: ^Asset_Manager, path: cstring) -> Loaded_BVH {
tracy.Zone()
loaded_bvh, ok := assetman.bvhs[path]
model, modtime, reloaded := get_model_ex(assetman, path, loaded_bvh.modtime)
should_recreate := reloaded || !ok
if ok && should_recreate {
destroy_loaded_bvh(loaded_bvh)
delete_key(&assetman.bvhs, path)
}
if should_recreate {
new_bvhs := make([]bvh.BVH, model.meshCount)
outer_aabb := bvh.AABB {
min = math.F32_MAX,
max = -math.F32_MAX,
}
for i in 0 ..< model.meshCount {
mesh := model.meshes[i]
vertices := (cast([^]rl.Vector3)mesh.vertices)[:mesh.vertexCount]
indices := mesh.indices[:mesh.triangleCount * 3]
mesh_bvh := bvh.build_bvh_from_mesh(
{vertices = vertices, indices = indices},
context.allocator,
)
root_aabb := mesh_bvh.bvh.nodes[0].aabb
outer_aabb.min = lg.min(outer_aabb.min, root_aabb.min)
outer_aabb.max = lg.max(outer_aabb.max, root_aabb.max)
new_bvhs[i] = mesh_bvh.bvh
}
assetman.bvhs[path] = Loaded_BVH {
aabb = outer_aabb,
bvhs = new_bvhs,
modtime = modtime,
}
}
return assetman.bvhs[path]
}
get_convex :: proc(assetman: ^Asset_Manager, path: cstring) -> (result: Loaded_Convex) {
bytes, err := os2.read_entire_file(string(path), context.temp_allocator)
if err != nil {
log.errorf("error reading file %v %s", err)
return
}
Parse_Ctx :: struct {
bytes: []byte,
it: int,
line: int,
}
advance :: proc(ctx: ^Parse_Ctx, by: int = 1) -> bool {
ctx.it = min(ctx.it + by, len(ctx.bytes) + 1)
return ctx.it < len(ctx.bytes)
}
is_whitespace :: proc(b: byte) -> bool {
return b == ' ' || b == '\t' || b == '\r' || b == '\n'
}
skip_line :: proc(ctx: ^Parse_Ctx) {
for ctx.it < len(ctx.bytes) && ctx.bytes[ctx.it] != '\n' {
advance(ctx) or_break
}
advance(ctx)
ctx.line += 1
}
skip_whitespase :: proc(ctx: ^Parse_Ctx) {
switch ctx.bytes[ctx.it] {
case ' ', '\t', '\r', '\n':
if ctx.bytes[ctx.it] == '\n' {
ctx.line += 1
}
advance(ctx) or_break
case '#':
skip_line(ctx)
}
}
Edge :: [2]u16
edges_map := make_map(map[Edge]halfedge.Edge_Index, context.temp_allocator)
edges := make_dynamic_array([dynamic]halfedge.Half_Edge, context.temp_allocator)
vertices := make_dynamic_array([dynamic]halfedge.Vertex, context.temp_allocator)
faces := make_dynamic_array([dynamic]halfedge.Face, context.temp_allocator)
center: rl.Vector3
// Parse obj file directly into halfedge data structure
{
ctx := Parse_Ctx {
bytes = bytes,
line = 1,
}
for ctx.it < len(ctx.bytes) {
skip_whitespase(&ctx)
switch ctx.bytes[ctx.it] {
case 'v':
// vertex
advance(&ctx) or_break
vertex: rl.Vector3
coord_idx := 0
for ctx.bytes[ctx.it] != '\n' {
skip_whitespase(&ctx)
s := string(ctx.bytes[ctx.it:])
coord_val, nr, ok := strconv.parse_f32_prefix(s)
if !ok {
log.errorf("failed to parse float at line %d", ctx.line)
return
}
advance(&ctx, nr) or_break
vertex[coord_idx] = coord_val
coord_idx += 1
}
append(&vertices, halfedge.Vertex{pos = vertex, edge = -1})
center += vertex
advance(&ctx)
ctx.line += 1
case 'f':
advance(&ctx) or_break
MAX_FACE_VERTS :: 10
indices_buf: [MAX_FACE_VERTS]u16
index_count := 0
for ctx.bytes[ctx.it] != '\n' {
skip_whitespase(&ctx)
index_f, nr, ok := strconv.parse_f32_prefix(string(ctx.bytes[ctx.it:]))
if !ok {
log.errorf("failed to parse index at line %d", ctx.line)
return
}
advance(&ctx, nr) or_break
index := u16(index_f) - 1
indices_buf[index_count] = u16(index)
index_count += 1
}
advance(&ctx)
ctx.line += 1
assert(index_count >= 3)
indices := indices_buf[:index_count]
append(&faces, halfedge.Face{})
face_idx := len(faces) - 1
face := &faces[face_idx]
first_edge_idx := len(edges)
face.edge = halfedge.Edge_Index(first_edge_idx)
plane: collision.Plane
{
i1, i2, i3 := indices[0], indices[1], indices[2]
v1, v2, v3 := vertices[i1].pos, vertices[i2].pos, vertices[i3].pos
plane = collision.plane_from_point_normal(
v1,
lg.normalize0(lg.cross(v2 - v1, v3 - v1)),
)
}
face.normal = plane.normal
// for index in indices[3:] {
// assert(
// abs(collision.signed_distance_plane(vertices[index].pos, plane)) < 0.01,
// "mesh has non planar faces",
// )
// }
// first_vert_pos := vertices[indices[0]].pos
for i in 0 ..< len(indices) {
edge_idx := halfedge.Edge_Index(first_edge_idx + i)
prev_edge_relative := i == 0 ? len(indices) - 1 : i - 1
next_edge_relative := (i + 1) % len(indices)
i1, i2 := indices[i], indices[next_edge_relative]
v1, _ := &vertices[i1], &vertices[i2]
// assert(
// lg.dot(
// lg.cross(v1.pos - first_vert_pos, v2.pos - first_vert_pos),
// plane.normal,
// ) >=
// 0,
// "non convex face or non ccw winding",
// )
if v1.edge == -1 {
v1.edge = edge_idx
}
edge := halfedge.Half_Edge {
origin = halfedge.Vertex_Index(i1),
face = halfedge.Face_Index(face_idx),
twin = -1,
next = halfedge.Edge_Index(first_edge_idx + next_edge_relative),
prev = halfedge.Edge_Index(first_edge_idx + prev_edge_relative),
}
stable_index := [2]u16{min(i1, i2), max(i1, i2)}
if stable_index in edges_map {
edge.twin = edges_map[stable_index]
twin_edge := &edges[edge.twin]
assert(twin_edge.twin == -1, "edge has more than two faces attached")
twin_edge.twin = edge_idx
} else {
edges_map[stable_index] = edge_idx
}
append(&edges, edge)
}
case:
skip_line(&ctx)
}
}
}
center /= f32(len(vertices))
center_of_mass: rl.Vector3
mesh := halfedge.Half_Edge_Mesh {
vertices = vertices[:],
edges = edges[:],
faces = faces[:],
center = center,
}
// Center of mass calculation
total_volume := f32(0.0)
{
rlgl.Begin(rlgl.TRIANGLES)
rlgl.End()
rlgl.EnableWireMode()
defer rlgl.DisableWireMode()
tri_idx := 0
for face_idx in 0 ..< len(faces) {
face := faces[face_idx]
// for all triangles
it := halfedge.iterator_face_edges(mesh, halfedge.Face_Index(face_idx))
i := 0
tri: [3]rl.Vector3
for edge in halfedge.iterate_next_edge(&it) {
switch i {
case 0 ..< 3:
tri[i] = mesh.vertices[edge.origin].pos
case:
tri[1] = tri[2]
tri[2] = mesh.vertices[edge.origin].pos
}
if i >= 2 {
plane := collision.plane_from_point_normal(tri[0], -face.normal)
h := max(0, collision.signed_distance_plane(center, plane))
tri_area :=
lg.dot(lg.cross(tri[1] - tri[0], tri[2] - tri[0]), face.normal) * 0.5
tetra_volume := 1.0 / 3.0 * tri_area * h
total_volume += tetra_volume
tetra_centroid := (tri[0] + tri[1] + tri[2] + center) * 0.25
center_of_mass += tetra_volume * tetra_centroid
tri_idx += 1
}
i += 1
}
}
}
assert(total_volume > 0, "degenerate convex hull")
center_of_mass /= total_volume
return {mesh = mesh, center_of_mass = center_of_mass}
}
debug_draw_tetrahedron_wires :: proc(tri: [3]rl.Vector3, p: rl.Vector3, color: rl.Color) {
rlgl.Begin(rlgl.LINES)
defer rlgl.End()
debug.rlgl_color(color)
debug.rlgl_vertex3v2(tri[0], tri[1])
debug.rlgl_vertex3v2(tri[1], tri[2])
debug.rlgl_vertex3v2(tri[2], tri[0])
debug.rlgl_vertex3v2(tri[0], p)
debug.rlgl_vertex3v2(tri[1], p)
debug.rlgl_vertex3v2(tri[2], p)
}
shutdown :: proc(assetman: ^Asset_Manager) {
tracy.Zone()
for _, texture in assetman.textures {
rl.UnloadTexture(texture.texture)
}
for _, model in assetman.models {
rl.UnloadModel(model.model)
}
for _, loaded_bvh in assetman.bvhs {
destroy_loaded_bvh(loaded_bvh)
}
delete(assetman.textures)
delete(assetman.models)
delete(assetman.bvhs)
}