Remove glad, fix windows build, finally a good base

This commit is contained in:
sergeypdev 2024-02-03 04:27:10 +04:00
parent 126a18b66b
commit 9945fa5b40
12 changed files with 9797 additions and 4915 deletions

4
.gitignore vendored
View File

@ -1,2 +1,2 @@
zig-out
zig-cache
zig-out
zig-cache

218
build.zig
View File

@ -1,117 +1,101 @@
const std = @import("std");
// Although this function looks imperative, note that its job is to
// declaratively construct a build graph that will be executed by an external
// runner.
pub fn build(b: *std.Build) void {
// Standard target options allows the person running `zig build` to choose
// what target to build for. Here we do not override the defaults, which
// means any target is allowed, and the default is native. Other options
// for restricting supported target set are available.
const target = b.standardTargetOptions(.{});
// Standard optimization options allow the person running `zig build` to select
// between Debug, ReleaseSafe, ReleaseFast, and ReleaseSmall. Here we do not
// set a preferred release mode, allowing the user to decide how to optimize.
const optimize = b.standardOptimizeOption(.{});
// const sdl_dep = b.dependency("SDL", .{
// .target = target,
// .optimize = .ReleaseSafe,
// });
// const sdl2 = sdl_dep.artifact("SDL2");
const glad = b.addSharedLibrary(.{
.name = "glad",
.target = target,
.optimize = optimize,
});
glad.addCSourceFile(.{ .file = .{ .path = "src/glad.c" } });
glad.addIncludePath(.{ .path = "include" });
const lib = b.addSharedLibrary(.{
.name = "learnopengl",
.root_source_file = .{ .path = "src/game.zig" },
.target = target,
.optimize = optimize,
});
lib.linkSystemLibrary("SDL2");
lib.addSystemIncludePath(.{ .path = "/opt/homebrew/opt/sdl2/include/" });
lib.addLibraryPath(.{ .path = "/opt/homebrew/opt/sdl2/lib" });
lib.linkLibrary(glad);
lib.addIncludePath(.{ .path = "include" });
const installLib = b.addInstallArtifact(lib, .{
.dest_dir = .{ .override = .bin },
});
b.getInstallStep().dependOn(&installLib.step);
const exe = b.addExecutable(.{
.name = "learnopengl",
// In this case the main source file is merely a path, however, in more
// complicated build scripts, this could be a generated file.
.root_source_file = .{ .path = "src/main.zig" },
.target = target,
.optimize = optimize,
});
exe.linkSystemLibrary("SDL2");
exe.addSystemIncludePath(.{ .path = "/opt/homebrew/opt/sdl2/include/" });
exe.addLibraryPath(.{ .path = "/opt/homebrew/opt/sdl2/lib" });
exe.linkLibrary(glad);
exe.addIncludePath(.{ .path = "include" });
// This declares intent for the executable to be installed into the
// standard location when the user invokes the "install" step (the default
// step when running `zig build`).
b.installArtifact(exe);
// This *creates* a Run step in the build graph, to be executed when another
// step is evaluated that depends on it. The next line below will establish
// such a dependency.
const run_cmd = b.addRunArtifact(exe);
// By making the run step depend on the install step, it will be run from the
// installation directory rather than directly from within the cache directory.
// This is not necessary, however, if the application depends on other installed
// files, this ensures they will be present and in the expected location.
run_cmd.step.dependOn(b.getInstallStep());
// This allows the user to pass arguments to the application in the build
// command itself, like this: `zig build run -- arg1 arg2 etc`
if (b.args) |args| {
run_cmd.addArgs(args);
}
// This creates a build step. It will be visible in the `zig build --help` menu,
// and can be selected like this: `zig build run`
// This will evaluate the `run` step rather than the default, which is "install".
const run_step = b.step("run", "Run the app");
run_step.dependOn(&run_cmd.step);
// // Creates a step for unit testing. This only builds the test executable
// // but does not run it.
// const lib_unit_tests = b.addTest(.{
// .root_source_file = .{ .path = "src/root.zig" },
// .target = target,
// .optimize = optimize,
// });
// const run_lib_unit_tests = b.addRunArtifact(lib_unit_tests);
const exe_unit_tests = b.addTest(.{
.root_source_file = .{ .path = "src/main.zig" },
.target = target,
.optimize = optimize,
});
const run_exe_unit_tests = b.addRunArtifact(exe_unit_tests);
// Similar to creating the run step earlier, this exposes a `test` step to
// the `zig build --help` menu, providing a way for the user to request
// running the unit tests.
const test_step = b.step("test", "Run unit tests");
// test_step.dependOn(&run_lib_unit_tests.step);
test_step.dependOn(&run_exe_unit_tests.step);
}
const std = @import("std");
// Although this function looks imperative, note that its job is to
// declaratively construct a build graph that will be executed by an external
// runner.
pub fn build(b: *std.Build) void {
// Standard target options allows the person running `zig build` to choose
// what target to build for. Here we do not override the defaults, which
// means any target is allowed, and the default is native. Other options
// for restricting supported target set are available.
const target = b.standardTargetOptions(.{});
// Standard optimization options allow the person running `zig build` to select
// between Debug, ReleaseSafe, ReleaseFast, and ReleaseSmall. Here we do not
// set a preferred release mode, allowing the user to decide how to optimize.
const optimize = b.standardOptimizeOption(.{});
const sdl_dep = b.dependency("SDL", .{
.target = target,
.optimize = .ReleaseSafe,
});
const sdl2 = sdl_dep.artifact("SDL2");
const lib = b.addSharedLibrary(.{
.name = "learnopengl",
.root_source_file = .{ .path = "src/game.zig" },
.target = target,
.optimize = optimize,
});
lib.linkLibrary(sdl2);
const installLib = b.addInstallArtifact(lib, .{
.dest_dir = .{ .override = .bin },
});
b.getInstallStep().dependOn(&installLib.step);
const exe = b.addExecutable(.{
.name = "learnopengl",
// In this case the main source file is merely a path, however, in more
// complicated build scripts, this could be a generated file.
.root_source_file = .{ .path = "src/main.zig" },
.target = target,
.optimize = optimize,
});
exe.linkLibrary(sdl2);
// This declares intent for the executable to be installed into the
// standard location when the user invokes the "install" step (the default
// step when running `zig build`).
b.installArtifact(exe);
// This *creates* a Run step in the build graph, to be executed when another
// step is evaluated that depends on it. The next line below will establish
// such a dependency.
const run_cmd = b.addRunArtifact(exe);
// By making the run step depend on the install step, it will be run from the
// installation directory rather than directly from within the cache directory.
// This is not necessary, however, if the application depends on other installed
// files, this ensures they will be present and in the expected location.
run_cmd.step.dependOn(b.getInstallStep());
// This allows the user to pass arguments to the application in the build
// command itself, like this: `zig build run -- arg1 arg2 etc`
if (b.args) |args| {
run_cmd.addArgs(args);
}
// This creates a build step. It will be visible in the `zig build --help` menu,
// and can be selected like this: `zig build run`
// This will evaluate the `run` step rather than the default, which is "install".
const run_step = b.step("run", "Run the app");
run_step.dependOn(&run_cmd.step);
// // Creates a step for unit testing. This only builds the test executable
// // but does not run it.
// const lib_unit_tests = b.addTest(.{
// .root_source_file = .{ .path = "src/root.zig" },
// .target = target,
// .optimize = optimize,
// });
// const run_lib_unit_tests = b.addRunArtifact(lib_unit_tests);
const exe_unit_tests = b.addTest(.{
.root_source_file = .{ .path = "src/main.zig" },
.target = target,
.optimize = optimize,
});
const run_exe_unit_tests = b.addRunArtifact(exe_unit_tests);
// Similar to creating the run step earlier, this exposes a `test` step to
// the `zig build --help` menu, providing a way for the user to request
// running the unit tests.
const test_step = b.step("test", "Run unit tests");
// test_step.dependOn(&run_lib_unit_tests.step);
test_step.dependOn(&run_exe_unit_tests.step);
}

View File

@ -16,8 +16,8 @@
// internet connectivity.
.dependencies = .{
.SDL = .{
.url = "https://github.com/sergeypdev/SDL/tarball/0d062f21742b2914a0258df718931f80a952be1a",
.hash = "122009e9c57dcbc6cd92be92c61eba913468ecfebd6c166011f6065a3ffbdc75f45f",
.url = "https://github.com/sergeypdev/SDL/tarball/b23c0ba880c53e5e98c57d2d5470c8d551a520b3",
.hash = "122080136ee910b4bec7be16e6c69cf1e7fc4f69d14f4d7d2dd1bba3c3fe30e489a3",
},
},
.paths = .{

View File

@ -1,311 +0,0 @@
#ifndef __khrplatform_h_
#define __khrplatform_h_
/*
** Copyright (c) 2008-2018 The Khronos Group Inc.
**
** Permission is hereby granted, free of charge, to any person obtaining a
** copy of this software and/or associated documentation files (the
** "Materials"), to deal in the Materials without restriction, including
** without limitation the rights to use, copy, modify, merge, publish,
** distribute, sublicense, and/or sell copies of the Materials, and to
** permit persons to whom the Materials are furnished to do so, subject to
** the following conditions:
**
** The above copyright notice and this permission notice shall be included
** in all copies or substantial portions of the Materials.
**
** THE MATERIALS ARE PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
** EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
** MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
** IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY
** CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
** TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
** MATERIALS OR THE USE OR OTHER DEALINGS IN THE MATERIALS.
*/
/* Khronos platform-specific types and definitions.
*
* The master copy of khrplatform.h is maintained in the Khronos EGL
* Registry repository at https://github.com/KhronosGroup/EGL-Registry
* The last semantic modification to khrplatform.h was at commit ID:
* 67a3e0864c2d75ea5287b9f3d2eb74a745936692
*
* Adopters may modify this file to suit their platform. Adopters are
* encouraged to submit platform specific modifications to the Khronos
* group so that they can be included in future versions of this file.
* Please submit changes by filing pull requests or issues on
* the EGL Registry repository linked above.
*
*
* See the Implementer's Guidelines for information about where this file
* should be located on your system and for more details of its use:
* http://www.khronos.org/registry/implementers_guide.pdf
*
* This file should be included as
* #include <KHR/khrplatform.h>
* by Khronos client API header files that use its types and defines.
*
* The types in khrplatform.h should only be used to define API-specific types.
*
* Types defined in khrplatform.h:
* khronos_int8_t signed 8 bit
* khronos_uint8_t unsigned 8 bit
* khronos_int16_t signed 16 bit
* khronos_uint16_t unsigned 16 bit
* khronos_int32_t signed 32 bit
* khronos_uint32_t unsigned 32 bit
* khronos_int64_t signed 64 bit
* khronos_uint64_t unsigned 64 bit
* khronos_intptr_t signed same number of bits as a pointer
* khronos_uintptr_t unsigned same number of bits as a pointer
* khronos_ssize_t signed size
* khronos_usize_t unsigned size
* khronos_float_t signed 32 bit floating point
* khronos_time_ns_t unsigned 64 bit time in nanoseconds
* khronos_utime_nanoseconds_t unsigned time interval or absolute time in
* nanoseconds
* khronos_stime_nanoseconds_t signed time interval in nanoseconds
* khronos_boolean_enum_t enumerated boolean type. This should
* only be used as a base type when a client API's boolean type is
* an enum. Client APIs which use an integer or other type for
* booleans cannot use this as the base type for their boolean.
*
* Tokens defined in khrplatform.h:
*
* KHRONOS_FALSE, KHRONOS_TRUE Enumerated boolean false/true values.
*
* KHRONOS_SUPPORT_INT64 is 1 if 64 bit integers are supported; otherwise 0.
* KHRONOS_SUPPORT_FLOAT is 1 if floats are supported; otherwise 0.
*
* Calling convention macros defined in this file:
* KHRONOS_APICALL
* KHRONOS_APIENTRY
* KHRONOS_APIATTRIBUTES
*
* These may be used in function prototypes as:
*
* KHRONOS_APICALL void KHRONOS_APIENTRY funcname(
* int arg1,
* int arg2) KHRONOS_APIATTRIBUTES;
*/
#if defined(__SCITECH_SNAP__) && !defined(KHRONOS_STATIC)
# define KHRONOS_STATIC 1
#endif
/*-------------------------------------------------------------------------
* Definition of KHRONOS_APICALL
*-------------------------------------------------------------------------
* This precedes the return type of the function in the function prototype.
*/
#if defined(KHRONOS_STATIC)
/* If the preprocessor constant KHRONOS_STATIC is defined, make the
* header compatible with static linking. */
# define KHRONOS_APICALL
#elif defined(_WIN32)
# define KHRONOS_APICALL __declspec(dllimport)
#elif defined (__SYMBIAN32__)
# define KHRONOS_APICALL IMPORT_C
#elif defined(__ANDROID__)
# define KHRONOS_APICALL __attribute__((visibility("default")))
#else
# define KHRONOS_APICALL
#endif
/*-------------------------------------------------------------------------
* Definition of KHRONOS_APIENTRY
*-------------------------------------------------------------------------
* This follows the return type of the function and precedes the function
* name in the function prototype.
*/
#if defined(_WIN32) && !defined(_WIN32_WCE) && !defined(__SCITECH_SNAP__)
/* Win32 but not WinCE */
# define KHRONOS_APIENTRY __stdcall
#else
# define KHRONOS_APIENTRY
#endif
/*-------------------------------------------------------------------------
* Definition of KHRONOS_APIATTRIBUTES
*-------------------------------------------------------------------------
* This follows the closing parenthesis of the function prototype arguments.
*/
#if defined (__ARMCC_2__)
#define KHRONOS_APIATTRIBUTES __softfp
#else
#define KHRONOS_APIATTRIBUTES
#endif
/*-------------------------------------------------------------------------
* basic type definitions
*-----------------------------------------------------------------------*/
#if (defined(__STDC_VERSION__) && __STDC_VERSION__ >= 199901L) || defined(__GNUC__) || defined(__SCO__) || defined(__USLC__)
/*
* Using <stdint.h>
*/
#include <stdint.h>
typedef int32_t khronos_int32_t;
typedef uint32_t khronos_uint32_t;
typedef int64_t khronos_int64_t;
typedef uint64_t khronos_uint64_t;
#define KHRONOS_SUPPORT_INT64 1
#define KHRONOS_SUPPORT_FLOAT 1
/*
* To support platform where unsigned long cannot be used interchangeably with
* inptr_t (e.g. CHERI-extended ISAs), we can use the stdint.h intptr_t.
* Ideally, we could just use (u)intptr_t everywhere, but this could result in
* ABI breakage if khronos_uintptr_t is changed from unsigned long to
* unsigned long long or similar (this results in different C++ name mangling).
* To avoid changes for existing platforms, we restrict usage of intptr_t to
* platforms where the size of a pointer is larger than the size of long.
*/
#if defined(__SIZEOF_LONG__) && defined(__SIZEOF_POINTER__)
#if __SIZEOF_POINTER__ > __SIZEOF_LONG__
#define KHRONOS_USE_INTPTR_T
#endif
#endif
#elif defined(__VMS ) || defined(__sgi)
/*
* Using <inttypes.h>
*/
#include <inttypes.h>
typedef int32_t khronos_int32_t;
typedef uint32_t khronos_uint32_t;
typedef int64_t khronos_int64_t;
typedef uint64_t khronos_uint64_t;
#define KHRONOS_SUPPORT_INT64 1
#define KHRONOS_SUPPORT_FLOAT 1
#elif defined(_WIN32) && !defined(__SCITECH_SNAP__)
/*
* Win32
*/
typedef __int32 khronos_int32_t;
typedef unsigned __int32 khronos_uint32_t;
typedef __int64 khronos_int64_t;
typedef unsigned __int64 khronos_uint64_t;
#define KHRONOS_SUPPORT_INT64 1
#define KHRONOS_SUPPORT_FLOAT 1
#elif defined(__sun__) || defined(__digital__)
/*
* Sun or Digital
*/
typedef int khronos_int32_t;
typedef unsigned int khronos_uint32_t;
#if defined(__arch64__) || defined(_LP64)
typedef long int khronos_int64_t;
typedef unsigned long int khronos_uint64_t;
#else
typedef long long int khronos_int64_t;
typedef unsigned long long int khronos_uint64_t;
#endif /* __arch64__ */
#define KHRONOS_SUPPORT_INT64 1
#define KHRONOS_SUPPORT_FLOAT 1
#elif 0
/*
* Hypothetical platform with no float or int64 support
*/
typedef int khronos_int32_t;
typedef unsigned int khronos_uint32_t;
#define KHRONOS_SUPPORT_INT64 0
#define KHRONOS_SUPPORT_FLOAT 0
#else
/*
* Generic fallback
*/
#include <stdint.h>
typedef int32_t khronos_int32_t;
typedef uint32_t khronos_uint32_t;
typedef int64_t khronos_int64_t;
typedef uint64_t khronos_uint64_t;
#define KHRONOS_SUPPORT_INT64 1
#define KHRONOS_SUPPORT_FLOAT 1
#endif
/*
* Types that are (so far) the same on all platforms
*/
typedef signed char khronos_int8_t;
typedef unsigned char khronos_uint8_t;
typedef signed short int khronos_int16_t;
typedef unsigned short int khronos_uint16_t;
/*
* Types that differ between LLP64 and LP64 architectures - in LLP64,
* pointers are 64 bits, but 'long' is still 32 bits. Win64 appears
* to be the only LLP64 architecture in current use.
*/
#ifdef KHRONOS_USE_INTPTR_T
typedef intptr_t khronos_intptr_t;
typedef uintptr_t khronos_uintptr_t;
#elif defined(_WIN64)
typedef signed long long int khronos_intptr_t;
typedef unsigned long long int khronos_uintptr_t;
#else
typedef signed long int khronos_intptr_t;
typedef unsigned long int khronos_uintptr_t;
#endif
#if defined(_WIN64)
typedef signed long long int khronos_ssize_t;
typedef unsigned long long int khronos_usize_t;
#else
typedef signed long int khronos_ssize_t;
typedef unsigned long int khronos_usize_t;
#endif
#if KHRONOS_SUPPORT_FLOAT
/*
* Float type
*/
typedef float khronos_float_t;
#endif
#if KHRONOS_SUPPORT_INT64
/* Time types
*
* These types can be used to represent a time interval in nanoseconds or
* an absolute Unadjusted System Time. Unadjusted System Time is the number
* of nanoseconds since some arbitrary system event (e.g. since the last
* time the system booted). The Unadjusted System Time is an unsigned
* 64 bit value that wraps back to 0 every 584 years. Time intervals
* may be either signed or unsigned.
*/
typedef khronos_uint64_t khronos_utime_nanoseconds_t;
typedef khronos_int64_t khronos_stime_nanoseconds_t;
#endif
/*
* Dummy value used to pad enum types to 32 bits.
*/
#ifndef KHRONOS_MAX_ENUM
#define KHRONOS_MAX_ENUM 0x7FFFFFFF
#endif
/*
* Enumerated boolean type
*
* Values other than zero should be considered to be true. Therefore
* comparisons should not be made against KHRONOS_TRUE.
*/
typedef enum {
KHRONOS_FALSE = 0,
KHRONOS_TRUE = 1,
KHRONOS_BOOLEAN_ENUM_FORCE_SIZE = KHRONOS_MAX_ENUM
} khronos_boolean_enum_t;
#endif /* __khrplatform_h_ */

File diff suppressed because it is too large Load Diff

View File

@ -1,4 +1,3 @@
pub usingnamespace @cImport({
@cInclude("glad/glad.h");
@cInclude("SDL2/SDL.h");
});
pub usingnamespace @cImport({
@cInclude("SDL2/SDL.h");
});

View File

@ -1,234 +1,242 @@
const std = @import("std");
const c = @import("c.zig");
const DEFAULT_WIDTH = 800;
const DEFAULT_HEIGHT = 600;
pub const InitMemory = struct {
global_allocator: std.mem.Allocator,
window: *c.SDL_Window,
context: ?*anyopaque,
width: c_int,
height: c_int,
};
pub const GameMemory = struct {
global_allocator: std.mem.Allocator,
counter: i32 = 0,
triangle_vao: c.GLuint = 0,
triangle_vbo: c.GLuint = 0,
shader_program: c.GLuint = 0,
};
var g_init_exists = false;
var g_init: *InitMemory = undefined;
var g_mem: *GameMemory = undefined;
fn game_init_window_err(global_allocator: std.mem.Allocator) !void {
try sdl_try(c.SDL_Init(c.SDL_INIT_EVERYTHING));
try sdl_try(c.SDL_GL_SetAttribute(c.SDL_GL_DOUBLEBUFFER, 1));
try sdl_try(c.SDL_GL_SetAttribute(c.SDL_GL_CONTEXT_MAJOR_VERSION, 4));
try sdl_try(c.SDL_GL_SetAttribute(c.SDL_GL_CONTEXT_MINOR_VERSION, 1));
try sdl_try(c.SDL_GL_SetAttribute(c.SDL_GL_CONTEXT_PROFILE_MASK, c.SDL_GL_CONTEXT_PROFILE_CORE));
const maybe_window = c.SDL_CreateWindow(
"Learn OpenGL with Zig!",
c.SDL_WINDOWPOS_CENTERED,
c.SDL_WINDOWPOS_CENTERED,
DEFAULT_WIDTH,
DEFAULT_HEIGHT,
c.SDL_WINDOW_SHOWN | c.SDL_WINDOW_OPENGL | c.SDL_WINDOW_RESIZABLE,
);
if (maybe_window == null) {
std.log.err("SDL Error: {s}", .{c.SDL_GetError()});
return error.SDLWindowError;
}
const window = maybe_window.?;
const context = c.SDL_GL_CreateContext(window);
if (c.gladLoadGLLoader(c.SDL_GL_GetProcAddress) == 0) {
return error.GladInitError;
}
c.glViewport(0, 0, DEFAULT_WIDTH, DEFAULT_HEIGHT);
std.log.debug("OpenGL Version: {}.{}", .{ c.GLVersion.major, c.GLVersion.minor });
g_init = try global_allocator.create(InitMemory);
g_init_exists = true;
g_init.* = .{
.global_allocator = global_allocator,
.window = window,
.context = context,
.width = DEFAULT_WIDTH,
.height = DEFAULT_HEIGHT,
};
}
export fn game_init_window(global_allocator: *std.mem.Allocator) void {
std.log.debug("game_init_window\n", .{});
game_init_window_err(global_allocator.*) catch |err| {
std.log.err("Failed to init window {}\n", .{err});
@panic("Failed to init window");
};
}
export fn game_init(global_allocator: *std.mem.Allocator) void {
std.log.debug("game_init\n", .{});
g_mem = global_allocator.create(GameMemory) catch @panic("OOM");
g_mem.* = .{
.global_allocator = global_allocator.*,
};
c.glGenBuffers(1, &g_mem.triangle_vbo);
c.glGenVertexArrays(1, &g_mem.triangle_vao);
c.glBindVertexArray(g_mem.triangle_vao);
c.glBindBuffer(c.GL_ARRAY_BUFFER, g_mem.triangle_vbo);
c.glBufferData(c.GL_ARRAY_BUFFER, @sizeOf(@TypeOf(vertices)), &vertices, c.GL_STATIC_DRAW);
c.glVertexAttribPointer(0, 3, c.GL_FLOAT, c.GL_FALSE, @sizeOf(f32) * 3, @ptrFromInt(0));
c.glEnableVertexAttribArray(0);
const vertex_shader = c.glCreateShader(c.GL_VERTEX_SHADER);
defer c.glDeleteShader(vertex_shader);
c.glShaderSource(vertex_shader, 1, &[_][*c]const u8{vertex_shader_code}, null);
c.glCompileShader(vertex_shader);
var success: c_int = 0;
c.glGetShaderiv(vertex_shader, c.GL_COMPILE_STATUS, &success);
if (success == 0) {
var info_log: [512:0]u8 = undefined;
c.glGetShaderInfoLog(vertex_shader, info_log.len, null, &info_log);
std.log.err("ERROR::SHADER::VERTEX::COMPILATION_FAILED\n{s}\n", .{@as([:0]const u8, &info_log)});
}
const fragment_shader = c.glCreateShader(c.GL_FRAGMENT_SHADER);
defer c.glDeleteShader(fragment_shader);
c.glShaderSource(fragment_shader, 1, &[_][*c]const u8{fragment_shader_code}, null);
c.glCompileShader(fragment_shader);
success = 0;
c.glGetShaderiv(fragment_shader, c.GL_COMPILE_STATUS, &success);
if (success == 0) {
var info_log: [512:0]u8 = undefined;
c.glGetShaderInfoLog(fragment_shader, info_log.len, null, &info_log);
std.log.err("ERROR::SHADER::FRAGMENT::COMPILATION_FAILED\n{s}\n", .{@as([:0]const u8, &info_log)});
}
g_mem.shader_program = c.glCreateProgram();
c.glAttachShader(g_mem.shader_program, vertex_shader);
c.glAttachShader(g_mem.shader_program, fragment_shader);
c.glLinkProgram(g_mem.shader_program);
success = 0;
c.glGetProgramiv(g_mem.shader_program, c.GL_LINK_STATUS, &success);
if (success == 0) {
var info_log: [512:0]u8 = undefined;
c.glGetProgramInfoLog(g_mem.shader_program, info_log.len, null, &info_log);
std.log.err("ERROR::SHADER::PROGRAM::LINK_FAILED\n{s}\n", .{@as([:0]const u8, &info_log)});
}
}
const vertex_shader_code = @embedFile("shaders/vert.glsl");
const fragment_shader_code = @embedFile("shaders/frag.glsl");
const vertices = [_]f32{
-0.5, -0.5, 0.0,
0.5, -0.5, 0.0,
0, 0.5, 0.0,
};
export fn game_update() bool {
var event: c.SDL_Event = undefined;
while (c.SDL_PollEvent(&event) != 0) {
switch (event.type) {
c.SDL_QUIT => {
return false;
},
c.SDL_KEYUP => {
if (event.key.keysym.sym == c.SDLK_ESCAPE) {
return false;
}
},
c.SDL_WINDOWEVENT => {
switch (event.window.type) {
c.SDL_WINDOWEVENT_SIZE_CHANGED => {
g_init.width = event.window.data1;
g_init.height = event.window.data2;
c.glViewport(0, 0, g_init.width, g_init.height);
},
else => {},
}
},
else => {},
}
g_mem.counter += 1;
c.glClearColor(0.0, 0.0, 0.0, 1.0);
c.glClear(c.GL_COLOR_BUFFER_BIT);
c.glUseProgram(g_mem.shader_program);
c.glBindVertexArray(g_mem.triangle_vao);
c.glDrawArrays(c.GL_TRIANGLES, 0, 3);
c.SDL_GL_SwapWindow(g_init.window);
c.SDL_Delay(1);
}
return true;
}
export fn game_shutdown() void {
std.log.debug("game_shutdown\n", .{});
g_mem.global_allocator.destroy(g_mem);
}
export fn game_shutdown_window() void {
std.log.debug("game_shutdown_window\n", .{});
c.SDL_GL_DeleteContext(g_init.context);
c.SDL_DestroyWindow(g_init.window);
g_init.global_allocator.destroy(g_init);
g_init_exists = false;
c.SDL_Quit();
}
export fn game_hot_reload(init_memory: ?*anyopaque, gmemory: ?*anyopaque) void {
std.log.debug("game_hot_reload {any} {any}\n", .{ init_memory, gmemory });
if (init_memory) |init_mem| {
g_init = @alignCast(@ptrCast(init_mem));
g_init_exists = true;
}
if (gmemory) |gmem| {
g_mem = @alignCast(@ptrCast(gmem));
}
if (g_init_exists) {
c.SDL_RaiseWindow(g_init.window);
}
}
export fn game_memory() *anyopaque {
return @ptrCast(g_mem);
}
export fn game_init_memory() *anyopaque {
return @ptrCast(g_init);
}
export fn game_memory_size() usize {
return @sizeOf(GameMemory);
}
export fn game_init_memory_size() usize {
return @sizeOf(InitMemory);
}
fn sdl_try(result: c_int) !void {
if (result < 0) {
std.log.err("SDL Error: {s}", .{c.SDL_GetError()});
return error.SDLError;
}
}
const std = @import("std");
const c = @import("c.zig");
const gl = @import("gl.zig");
const DEFAULT_WIDTH = 800;
const DEFAULT_HEIGHT = 600;
pub const InitMemory = struct {
global_allocator: std.mem.Allocator,
window: *c.SDL_Window,
context: ?*anyopaque,
width: c_int,
height: c_int,
};
pub const GameMemory = struct {
global_allocator: std.mem.Allocator,
counter: i32 = 0,
triangle_vao: gl.GLuint = 0,
triangle_vbo: gl.GLuint = 0,
shader_program: gl.GLuint = 0,
};
var g_init_exists = false;
var g_init: *InitMemory = undefined;
var g_mem: *GameMemory = undefined;
fn game_init_window_err(global_allocator: std.mem.Allocator) !void {
try sdl_try(c.SDL_Init(c.SDL_INIT_EVERYTHING));
try sdl_try(c.SDL_GL_SetAttribute(c.SDL_GL_DOUBLEBUFFER, 1));
try sdl_try(c.SDL_GL_SetAttribute(c.SDL_GL_CONTEXT_MAJOR_VERSION, 4));
try sdl_try(c.SDL_GL_SetAttribute(c.SDL_GL_CONTEXT_MINOR_VERSION, 5));
try sdl_try(c.SDL_GL_SetAttribute(c.SDL_GL_CONTEXT_PROFILE_MASK, c.SDL_GL_CONTEXT_PROFILE_CORE));
const maybe_window = c.SDL_CreateWindow(
"Learn OpenGL with Zig!",
c.SDL_WINDOWPOS_CENTERED,
c.SDL_WINDOWPOS_CENTERED,
DEFAULT_WIDTH,
DEFAULT_HEIGHT,
c.SDL_WINDOW_SHOWN | c.SDL_WINDOW_OPENGL | c.SDL_WINDOW_RESIZABLE,
);
if (maybe_window == null) {
std.log.err("SDL Error: {s}", .{c.SDL_GetError()});
return error.SDLWindowError;
}
const window = maybe_window.?;
const context = c.SDL_GL_CreateContext(window);
try gl.load(null, struct {
fn getProcAddress(ctx: @TypeOf(null), proc: [:0]const u8) ?gl.FunctionPointer {
_ = ctx;
return @ptrCast(c.SDL_GL_GetProcAddress(proc));
}
}.getProcAddress);
gl.viewport(0, 0, DEFAULT_WIDTH, DEFAULT_HEIGHT);
var majorVer: gl.GLint = 0;
var minorVer: gl.GLint = 0;
gl.getIntegerv(gl.MAJOR_VERSION, &majorVer);
gl.getIntegerv(gl.MINOR_VERSION, &minorVer);
std.log.debug("OpenGL Version: {}.{}", .{ majorVer, minorVer });
g_init = try global_allocator.create(InitMemory);
g_init_exists = true;
g_init.* = .{
.global_allocator = global_allocator,
.window = window,
.context = context,
.width = DEFAULT_WIDTH,
.height = DEFAULT_HEIGHT,
};
}
export fn game_init_window(global_allocator: *std.mem.Allocator) void {
std.log.debug("game_init_window\n", .{});
game_init_window_err(global_allocator.*) catch |err| {
std.log.err("Failed to init window {}\n", .{err});
@panic("Failed to init window");
};
}
export fn game_init(global_allocator: *std.mem.Allocator) void {
std.log.debug("game_init\n", .{});
g_mem = global_allocator.create(GameMemory) catch @panic("OOM");
g_mem.* = .{
.global_allocator = global_allocator.*,
};
gl.genBuffers(1, &g_mem.triangle_vbo);
gl.genVertexArrays(1, &g_mem.triangle_vao);
gl.bindVertexArray(g_mem.triangle_vao);
gl.bindBuffer(gl.ARRAY_BUFFER, g_mem.triangle_vbo);
gl.bufferData(gl.ARRAY_BUFFER, @sizeOf(@TypeOf(vertices)), &vertices, gl.STATIC_DRAW);
gl.vertexAttribPointer(0, 3, gl.FLOAT, gl.FALSE, @sizeOf(f32) * 3, @ptrFromInt(0));
gl.enableVertexAttribArray(0);
const vertex_shader = gl.createShader(gl.VERTEX_SHADER);
defer gl.deleteShader(vertex_shader);
gl.shaderSource(vertex_shader, 1, &[_][*c]const u8{vertex_shader_code}, null);
gl.compileShader(vertex_shader);
var success: c_int = 0;
gl.getShaderiv(vertex_shader, gl.COMPILE_STATUS, &success);
if (success == 0) {
var info_log: [512:0]u8 = undefined;
gl.getShaderInfoLog(vertex_shader, info_log.len, null, &info_log);
std.log.err("ERROR::SHADER::VERTEX::COMPILATION_FAILED\n{s}\n", .{@as([:0]const u8, &info_log)});
}
const fragment_shader = gl.createShader(gl.FRAGMENT_SHADER);
defer gl.deleteShader(fragment_shader);
gl.shaderSource(fragment_shader, 1, &[_][*c]const u8{fragment_shader_code}, null);
gl.compileShader(fragment_shader);
success = 0;
gl.getShaderiv(fragment_shader, gl.COMPILE_STATUS, &success);
if (success == 0) {
var info_log: [512:0]u8 = undefined;
gl.getShaderInfoLog(fragment_shader, info_log.len, null, &info_log);
std.log.err("ERROR::SHADER::FRAGMENT::COMPILATION_FAILED\n{s}\n", .{@as([:0]const u8, &info_log)});
}
g_mem.shader_program = gl.createProgram();
gl.attachShader(g_mem.shader_program, vertex_shader);
gl.attachShader(g_mem.shader_program, fragment_shader);
gl.linkProgram(g_mem.shader_program);
success = 0;
gl.getProgramiv(g_mem.shader_program, gl.LINK_STATUS, &success);
if (success == 0) {
var info_log: [512:0]u8 = undefined;
gl.getProgramInfoLog(g_mem.shader_program, info_log.len, null, &info_log);
std.log.err("ERROR::SHADER::PROGRAM::LINK_FAILED\n{s}\n", .{@as([:0]const u8, &info_log)});
}
}
const vertex_shader_code = @embedFile("shaders/vert.glsl");
const fragment_shader_code = @embedFile("shaders/frag.glsl");
const vertices = [_]f32{
-0.5, -0.5, 0.0,
0.5, -0.5, 0.0,
0, 0.5, 0.0,
};
export fn game_update() bool {
var event: c.SDL_Event = undefined;
while (c.SDL_PollEvent(&event) != 0) {
switch (event.type) {
c.SDL_QUIT => {
return false;
},
c.SDL_KEYUP => {
if (event.key.keysym.sym == c.SDLK_ESCAPE) {
return false;
}
},
c.SDL_WINDOWEVENT => {
switch (event.window.type) {
c.SDL_WINDOWEVENT_SIZE_CHANGED => {
g_init.width = event.window.data1;
g_init.height = event.window.data2;
gl.viewport(0, 0, g_init.width, g_init.height);
},
else => {},
}
},
else => {},
}
g_mem.counter += 1;
gl.clearColor(0.0, 0.0, 0.0, 1.0);
gl.clear(gl.COLOR_BUFFER_BIT);
gl.useProgram(g_mem.shader_program);
gl.bindVertexArray(g_mem.triangle_vao);
gl.drawArrays(gl.TRIANGLES, 0, 3);
c.SDL_GL_SwapWindow(g_init.window);
c.SDL_Delay(1);
}
return true;
}
export fn game_shutdown() void {
std.log.debug("game_shutdown\n", .{});
g_mem.global_allocator.destroy(g_mem);
}
export fn game_shutdown_window() void {
std.log.debug("game_shutdown_window\n", .{});
c.SDL_GL_DeleteContext(g_init.context);
c.SDL_DestroyWindow(g_init.window);
g_init.global_allocator.destroy(g_init);
g_init_exists = false;
c.SDL_Quit();
}
export fn game_hot_reload(init_memory: ?*anyopaque, gmemory: ?*anyopaque) void {
std.log.debug("game_hot_reload {any} {any}\n", .{ init_memory, gmemory });
if (init_memory) |init_mem| {
g_init = @alignCast(@ptrCast(init_mem));
g_init_exists = true;
}
if (gmemory) |gmem| {
g_mem = @alignCast(@ptrCast(gmem));
}
if (g_init_exists) {
c.SDL_RaiseWindow(g_init.window);
}
}
export fn game_memory() *anyopaque {
return @ptrCast(g_mem);
}
export fn game_init_memory() *anyopaque {
return @ptrCast(g_init);
}
export fn game_memory_size() usize {
return @sizeOf(GameMemory);
}
export fn game_init_memory_size() usize {
return @sizeOf(InitMemory);
}
fn sdl_try(result: c_int) !void {
if (result < 0) {
std.log.err("SDL Error: {s}", .{c.SDL_GetError()});
return error.SDLError;
}
}

9275
src/gl.zig Normal file

File diff suppressed because it is too large Load Diff

1421
src/glad.c

File diff suppressed because it is too large Load Diff

View File

@ -1,158 +1,158 @@
const std = @import("std");
const c = @import("c.zig");
const builtin = @import("builtin");
const game_lib_basename = "learnopengl";
const game_lib_name: [:0]const u8 = builtin.target.libPrefix() ++ game_lib_basename ++ builtin.target.dynamicLibSuffix();
var game_api: GameAPI = undefined;
pub fn main() !void {
var global_alloc = std.heap.LoggingAllocator(.debug, .err).init(std.heap.c_allocator);
var allocator = global_alloc.allocator();
var arena = std.heap.ArenaAllocator.init(std.heap.page_allocator);
const temp_allocator = arena.allocator();
_ = temp_allocator;
const game_lib_path = try getGameLibPath(allocator);
var modified = try getFileModifiedZ(game_lib_path);
game_api = try loadGameAPI(allocator, game_lib_path);
game_api.game_init_window(&allocator);
game_api.game_init(&allocator);
defer {
game_api.game_shutdown();
game_api.deinit(allocator);
}
var exit = false;
while (!exit) {
_ = arena.reset(.retain_capacity);
const new_modified = try getFileModifiedZ(game_lib_path);
if (new_modified != modified) {
modified = new_modified;
var new_game_api = try loadGameAPI(allocator, game_lib_path);
var recreate_state = false;
var recreate_window = false;
const game_init_memory = game_api.game_init_memory();
const game_memory = game_api.game_memory();
if (game_api.game_memory_size() != new_game_api.game_memory_size()) {
recreate_state = true;
}
if (game_api.game_init_memory_size() != new_game_api.game_init_memory_size()) {
recreate_window = true;
}
if (recreate_state) {
game_api.game_shutdown();
}
if (recreate_window) {
game_api.game_shutdown_window();
}
if (recreate_window) {
new_game_api.game_init_window(&allocator);
} else {
new_game_api.game_hot_reload(game_init_memory, null);
}
if (recreate_state) {
new_game_api.game_init(&allocator);
} else {
new_game_api.game_hot_reload(null, game_memory);
}
game_api.deinit(allocator);
game_api = new_game_api;
}
exit = !game_api.game_update();
}
}
fn getFileModifiedZ(path: [:0]const u8) !i128 {
var lib_file = try std.fs.openFileAbsoluteZ(path, .{});
defer lib_file.close();
var lib_file_meta = try lib_file.metadata();
return lib_file_meta.modified();
}
fn getGameLibPath(allocator: std.mem.Allocator) ![:0]const u8 {
const base_path = std.mem.span(c.SDL_GetBasePath());
const game_lib_path = try std.fs.path.joinZ(allocator, &.{ base_path, game_lib_name });
return game_lib_path;
}
var game_version: usize = 0;
fn loadGameAPI(arena: std.mem.Allocator, game_lib_path: [:0]const u8) !GameAPI {
game_version += 1;
const base_path = std.mem.span(c.SDL_GetBasePath());
const temp_lib_name = try std.fmt.allocPrintZ(
arena,
builtin.target.libPrefix() ++ "{s}_{}" ++ builtin.target.dynamicLibSuffix(),
.{ game_lib_basename, game_version },
);
const temp_lib_path = try std.fs.path.joinZ(arena, &.{ base_path, temp_lib_name });
std.log.debug("Copying game dll from {s} to {s}\n", .{ game_lib_path, temp_lib_path });
try std.fs.copyFileAbsolute(game_lib_path, temp_lib_path, .{});
std.log.debug("Loading game lib at path {s}\n", .{temp_lib_path});
const dll = c.SDL_LoadObject(temp_lib_path);
if (dll == null) {
std.log.debug("SDL Error: {s}", .{c.SDL_GetError()});
return error.SDLDLLLoadFailed;
}
return try GameAPI.init(dll, temp_lib_path);
}
const GameAPI = struct {
game_init_window: *const fn (*std.mem.Allocator) callconv(.C) void,
game_init: *const fn (*std.mem.Allocator) callconv(.C) void,
game_update: *const fn () callconv(.C) bool,
game_shutdown: *const fn () callconv(.C) void,
game_shutdown_window: *const fn () callconv(.C) void,
game_memory_size: *const fn () callconv(.C) usize,
game_init_memory_size: *const fn () callconv(.C) usize,
game_memory: *const fn () callconv(.C) *anyopaque,
game_init_memory: *const fn () callconv(.C) *anyopaque,
game_hot_reload: *const fn (?*anyopaque, ?*anyopaque) callconv(.C) void,
dll: ?*anyopaque,
path: [:0]const u8,
pub fn init(dll: ?*anyopaque, path: [:0]const u8) !GameAPI {
return GameAPI{
.game_init_window = @alignCast(@ptrCast(c.SDL_LoadFunction(dll, "game_init_window") orelse return error.MissingGameInitWindow)),
.game_init = @alignCast(@ptrCast(c.SDL_LoadFunction(dll, "game_init") orelse return error.MissingGameInit)),
.game_update = @alignCast(@ptrCast(c.SDL_LoadFunction(dll, "game_update") orelse return error.MissingGameUpdate)),
.game_shutdown = @alignCast(@ptrCast(c.SDL_LoadFunction(dll, "game_shutdown") orelse return error.MissingGameShutdown)),
.game_shutdown_window = @alignCast(@ptrCast(c.SDL_LoadFunction(dll, "game_shutdown_window") orelse return error.MissingGameShutdownWindow)),
.game_memory_size = @alignCast(@ptrCast(c.SDL_LoadFunction(dll, "game_memory_size") orelse return error.MissingGameMemorySize)),
.game_init_memory_size = @alignCast(@ptrCast(c.SDL_LoadFunction(dll, "game_init_memory_size") orelse return error.MissingGameInitMemorySize)),
.game_memory = @alignCast(@ptrCast(c.SDL_LoadFunction(dll, "game_memory") orelse return error.MissingGameMemory)),
.game_init_memory = @alignCast(@ptrCast(c.SDL_LoadFunction(dll, "game_init_memory") orelse return error.MissingGameInitMemory)),
.game_hot_reload = @alignCast(@ptrCast(c.SDL_LoadFunction(dll, "game_hot_reload") orelse return error.MissingGameHotReload)),
.dll = dll,
.path = path,
};
}
pub fn deinit(self: *GameAPI, allocator: std.mem.Allocator) void {
c.SDL_UnloadObject(self.dll);
std.fs.deleteFileAbsolute(self.path) catch |err| {
std.log.debug("failed to delete temp game dll {}", .{err});
};
allocator.free(self.path);
}
};
const std = @import("std");
const c = @import("c.zig");
const builtin = @import("builtin");
const game_lib_basename = "learnopengl";
const game_lib_name: [:0]const u8 = builtin.target.libPrefix() ++ game_lib_basename ++ builtin.target.dynamicLibSuffix();
var game_api: GameAPI = undefined;
pub fn main() !void {
var global_alloc = std.heap.LoggingAllocator(.debug, .err).init(std.heap.c_allocator);
var allocator = global_alloc.allocator();
var arena = std.heap.ArenaAllocator.init(std.heap.page_allocator);
const temp_allocator = arena.allocator();
_ = temp_allocator;
const game_lib_path = try getGameLibPath(allocator);
var modified = try getFileModifiedZ(game_lib_path);
game_api = try loadGameAPI(allocator, game_lib_path);
game_api.game_init_window(&allocator);
game_api.game_init(&allocator);
defer {
game_api.game_shutdown();
game_api.deinit(allocator);
}
var exit = false;
while (!exit) {
_ = arena.reset(.retain_capacity);
const new_modified = try getFileModifiedZ(game_lib_path);
if (new_modified != modified) {
modified = new_modified;
var new_game_api = try loadGameAPI(allocator, game_lib_path);
var recreate_state = false;
var recreate_window = false;
const game_init_memory = game_api.game_init_memory();
const game_memory = game_api.game_memory();
if (game_api.game_memory_size() != new_game_api.game_memory_size()) {
recreate_state = true;
}
if (game_api.game_init_memory_size() != new_game_api.game_init_memory_size()) {
recreate_window = true;
}
if (recreate_state) {
game_api.game_shutdown();
}
if (recreate_window) {
game_api.game_shutdown_window();
}
if (recreate_window) {
new_game_api.game_init_window(&allocator);
} else {
new_game_api.game_hot_reload(game_init_memory, null);
}
if (recreate_state) {
new_game_api.game_init(&allocator);
} else {
new_game_api.game_hot_reload(null, game_memory);
}
game_api.deinit(allocator);
game_api = new_game_api;
}
exit = !game_api.game_update();
}
}
fn getFileModifiedZ(path: [:0]const u8) !i128 {
var lib_file = try std.fs.openFileAbsoluteZ(path, .{});
defer lib_file.close();
var lib_file_meta = try lib_file.metadata();
return lib_file_meta.modified();
}
fn getGameLibPath(allocator: std.mem.Allocator) ![:0]const u8 {
const base_path = std.mem.span(c.SDL_GetBasePath());
const game_lib_path = try std.fs.path.joinZ(allocator, &.{ base_path, game_lib_name });
return game_lib_path;
}
var game_version: usize = 0;
fn loadGameAPI(arena: std.mem.Allocator, game_lib_path: [:0]const u8) !GameAPI {
game_version += 1;
const base_path = std.mem.span(c.SDL_GetBasePath());
const temp_lib_name = try std.fmt.allocPrintZ(
arena,
builtin.target.libPrefix() ++ "{s}_{}" ++ builtin.target.dynamicLibSuffix(),
.{ game_lib_basename, game_version },
);
const temp_lib_path = try std.fs.path.joinZ(arena, &.{ base_path, temp_lib_name });
std.log.debug("Copying game dll from {s} to {s}\n", .{ game_lib_path, temp_lib_path });
try std.fs.copyFileAbsolute(game_lib_path, temp_lib_path, .{});
std.log.debug("Loading game lib at path {s}\n", .{temp_lib_path});
const dll = c.SDL_LoadObject(temp_lib_path);
if (dll == null) {
std.log.debug("SDL Error: {s}", .{c.SDL_GetError()});
return error.SDLDLLLoadFailed;
}
return try GameAPI.init(dll, temp_lib_path);
}
const GameAPI = struct {
game_init_window: *const fn (*std.mem.Allocator) callconv(.C) void,
game_init: *const fn (*std.mem.Allocator) callconv(.C) void,
game_update: *const fn () callconv(.C) bool,
game_shutdown: *const fn () callconv(.C) void,
game_shutdown_window: *const fn () callconv(.C) void,
game_memory_size: *const fn () callconv(.C) usize,
game_init_memory_size: *const fn () callconv(.C) usize,
game_memory: *const fn () callconv(.C) *anyopaque,
game_init_memory: *const fn () callconv(.C) *anyopaque,
game_hot_reload: *const fn (?*anyopaque, ?*anyopaque) callconv(.C) void,
dll: ?*anyopaque,
path: [:0]const u8,
pub fn init(dll: ?*anyopaque, path: [:0]const u8) !GameAPI {
return GameAPI{
.game_init_window = @alignCast(@ptrCast(c.SDL_LoadFunction(dll, "game_init_window") orelse return error.MissingGameInitWindow)),
.game_init = @alignCast(@ptrCast(c.SDL_LoadFunction(dll, "game_init") orelse return error.MissingGameInit)),
.game_update = @alignCast(@ptrCast(c.SDL_LoadFunction(dll, "game_update") orelse return error.MissingGameUpdate)),
.game_shutdown = @alignCast(@ptrCast(c.SDL_LoadFunction(dll, "game_shutdown") orelse return error.MissingGameShutdown)),
.game_shutdown_window = @alignCast(@ptrCast(c.SDL_LoadFunction(dll, "game_shutdown_window") orelse return error.MissingGameShutdownWindow)),
.game_memory_size = @alignCast(@ptrCast(c.SDL_LoadFunction(dll, "game_memory_size") orelse return error.MissingGameMemorySize)),
.game_init_memory_size = @alignCast(@ptrCast(c.SDL_LoadFunction(dll, "game_init_memory_size") orelse return error.MissingGameInitMemorySize)),
.game_memory = @alignCast(@ptrCast(c.SDL_LoadFunction(dll, "game_memory") orelse return error.MissingGameMemory)),
.game_init_memory = @alignCast(@ptrCast(c.SDL_LoadFunction(dll, "game_init_memory") orelse return error.MissingGameInitMemory)),
.game_hot_reload = @alignCast(@ptrCast(c.SDL_LoadFunction(dll, "game_hot_reload") orelse return error.MissingGameHotReload)),
.dll = dll,
.path = path,
};
}
pub fn deinit(self: *GameAPI, allocator: std.mem.Allocator) void {
c.SDL_UnloadObject(self.dll);
std.fs.deleteFileAbsolute(self.path) catch |err| {
std.log.debug("failed to delete temp game dll {}", .{err});
};
allocator.free(self.path);
}
};

View File

@ -1,7 +1,7 @@
#version 330 core
out vec4 FragColor;
void main() {
FragColor = vec4(1.0f, 0.5f, 0.2f, 1.0f);
}
#version 330 core
out vec4 FragColor;
void main() {
FragColor = vec4(1.0f, 0.5f, 0.2f, 1.0f);
}

View File

@ -1,7 +1,7 @@
#version 330 core
layout(location = 0) in vec3 aPos;
void main() {
gl_Position = vec4(aPos.xyz, 1.0);
}
#version 330 core
layout(location = 0) in vec3 aPos;
void main() {
gl_Position = vec4(aPos.xyz, 1.0);
}