engine/build.zig

329 lines
13 KiB
Zig

const std = @import("std");
const Build = std.Build;
const Step = Build.Step;
const GenerateAssetManifest = @import("tools/GenerateAssetManifest.zig");
const asset_types = @import("tools/types.zig");
const formats = @import("src/formats.zig");
fn buildVulkanWrapper(b: *Build, target: Build.ResolvedTarget, optimize: std.builtin.OptimizeMode) *Build.Module {
const registry = b.dependency("vulkan_headers", .{}).path("registry/vk.xml");
const vk_gen = b.dependency("vulkan_zig", .{}).artifact("vulkan-zig-generator");
const vk_generate_cmd = b.addRunArtifact(vk_gen);
vk_generate_cmd.addFileArg(registry);
const vk_zig_path = vk_generate_cmd.addOutputFileArg("vk.zig");
return b.addModule("vk", .{
.root_source_file = vk_zig_path,
.optimize = optimize,
.target = target,
});
}
// Although this function looks imperative, note that its job is to
// declaratively construct a build graph that will be executed by an external
// runner.
pub fn build(b: *Build) void {
// Standard target options allows the person running `zig build` to choose
// what target to build for. Here we do not override the defaults, which
// means any target is allowed, and the default is native. Other options
// for restricting supported target set are available.
const target = b.standardTargetOptions(.{});
// Standard optimization options allow the person running `zig build` to select
// between Debug, ReleaseSafe, ReleaseFast, and ReleaseSmall. Here we do not
// set a preferred release mode, allowing the user to decide how to optimize.
const optimize = b.standardOptimizeOption(.{});
const buildOptimize = b.option(
std.builtin.OptimizeMode,
"boptimize",
"Prioritize performance, safety, or binary size for build time tools",
) orelse .Debug;
const vk = buildVulkanWrapper(b, target, optimize);
const vma_dep = b.dependency("vma", .{});
const vma = b.addStaticLibrary(.{
.name = "vma",
.target = target,
.optimize = optimize,
});
vma.linkLibC();
vma.linkLibCpp();
vma.addIncludePath(b.dependency("vulkan_headers", .{}).path("include"));
vma.addIncludePath(vma_dep.path("include"));
vma.installHeadersDirectory(vma_dep.path("include"), "", .{});
vma.addCSourceFile(.{
.file = b.path("libs/vma/vma.cpp"),
});
const tracy = b.dependency("zig-tracy", .{
.target = target,
.optimize = optimize,
});
const zalgebra_dep = b.dependency("zalgebra", .{});
const assets_mod = b.addModule("assets", .{ .root_source_file = b.path("src/assets/root.zig") });
const asset_manifest_mod = b.addModule("asset_manifest", .{ .root_source_file = b.path("src/gen/asset_manifest.zig") });
asset_manifest_mod.addImport("assets", assets_mod);
const assets_step = b.step("assets", "Build and install assets");
b.getInstallStep().dependOn(assets_step);
const assetc = buildAssetCompiler(b, buildOptimize, assets_mod);
const install_assetc_step = b.addInstallArtifact(assetc, .{ .dest_dir = .{ .override = .prefix } });
assets_step.dependOn(&install_assetc_step.step);
const gen_asset_manifest = buildAssets(b, &install_assetc_step.step, assets_step, assetc, "assets") catch |err| {
std.log.err("Failed to build assets {}\n", .{err});
@panic("buildAssets");
};
const gen_asset_manifest_mod = b.createModule(.{ .root_source_file = gen_asset_manifest });
gen_asset_manifest_mod.addImport("assets", assets_mod);
asset_manifest_mod.addImport("asset_manifest_gen", gen_asset_manifest_mod);
const lib = b.addSharedLibrary(.{
.name = "learnopengl",
.root_source_file = .{ .src_path = .{ .owner = b, .sub_path = "src/game.zig" } },
.target = target,
.optimize = optimize,
});
const lib_unit_tests = b.addTest(.{
.root_source_file = .{ .src_path = .{ .owner = b, .sub_path = "src/game.zig" } },
.target = target,
.optimize = optimize,
});
const lib_compiles = [_]*Step.Compile{ lib, lib_unit_tests };
inline for (lib_compiles) |l| {
l.root_module.addImport("zalgebra", zalgebra_dep.module("zalgebra"));
l.root_module.addImport("assets", assets_mod);
l.root_module.addImport("asset_manifest", asset_manifest_mod);
l.root_module.addImport("tracy", tracy.module("tracy"));
l.root_module.addImport("vk", vk);
l.linkLibrary(tracy.artifact("tracy"));
l.linkLibrary(vma);
}
const install_lib = b.addInstallArtifact(lib, .{ .dest_dir = .{ .override = .prefix } });
b.getInstallStep().dependOn(&install_lib.step);
const exe = b.addExecutable(.{
.name = "learnopengl",
// In this case the main source file is merely a path, however, in more
// complicated build scripts, this could be a generated file.
.root_source_file = .{ .src_path = .{ .owner = b, .sub_path = "src/main.zig" } },
.target = target,
.optimize = optimize,
});
if (b.systemIntegrationOption("SDL2", .{ .default = b.host.result.os.tag != .windows })) {
exe.linkSystemLibrary("SDL2");
exe.linkLibC();
inline for (lib_compiles) |l| {
l.linkSystemLibrary("SDL2");
l.linkLibC();
}
} else {
const sdl_dep = b.dependency("SDL", .{
.target = target,
.optimize = .ReleaseSafe,
});
const sdl2 = sdl_dep.artifact("SDL2");
b.getInstallStep().dependOn(&b.addInstallArtifact(sdl2, .{ .dest_dir = .{ .override = .prefix } }).step);
exe.linkLibrary(sdl2);
inline for (lib_compiles) |l| {
l.linkLibrary(sdl2);
}
}
// This declares intent for the executable to be installed into the
// standard location when the user invokes the "install" step (the default
// step when running `zig build`).
const install_exe = b.addInstallArtifact(exe, .{ .dest_dir = .{ .override = .prefix } });
b.getInstallStep().dependOn(&install_exe.step);
// This *creates* a Run step in the build graph, to be executed when another
// step is evaluated that depends on it. The next line below will establish
// such a dependency.
const run_cmd = b.addRunArtifact(exe);
// By making the run step depend on the install step, it will be run from the
// installation directory rather than directly from within the cache directory.
// This is not necessary, however, if the application depends on other installed
// files, this ensures they will be present and in the expected location.
run_cmd.step.dependOn(b.getInstallStep());
// This allows the user to pass arguments to the application in the build
// command itself, like this: `zig build run -- arg1 arg2 etc`
if (b.args) |args| {
run_cmd.addArgs(args);
}
// This creates a build step. It will be visible in the `zig build --help` menu,
// and can be selected like this: `zig build run`
// This will evaluate the `run` step rather than the default, which is "install".
const run_step = b.step("run", "Run the app");
run_step.dependOn(&run_cmd.step);
const run_lib_unit_tests = b.addRunArtifact(lib_unit_tests);
const exe_unit_tests = b.addTest(.{
.root_source_file = .{ .src_path = .{ .owner = b, .sub_path = "src/main.zig" } },
.target = target,
.optimize = optimize,
});
const run_exe_unit_tests = b.addRunArtifact(exe_unit_tests);
// Similar to creating the run step earlier, this exposes a `test` step to
// the `zig build --help` menu, providing a way for the user to request
// running the unit tests.
const test_step = b.step("test", "Run unit tests");
test_step.dependOn(&run_lib_unit_tests.step);
test_step.dependOn(&run_exe_unit_tests.step);
}
const assetc_extensions = [_][]const u8{
"obj",
"png",
"dds",
"tga",
"jpg",
"exr",
"fbx",
"gltf",
"glb",
"prog",
};
// const shader_program_ext = "prog";
// Find all assets and cook them using assetc
fn buildAssets(b: *std.Build, install_assetc_step: *Step, step: *Step, assetc: *Step.Compile, path: []const u8) !Build.LazyPath {
const assetsPath = b.pathFromRoot(path);
defer b.allocator.free(assetsPath);
var assetsDir = try std.fs.openDirAbsolute(assetsPath, .{ .iterate = true });
defer assetsDir.close();
const gen_asset_manifest = GenerateAssetManifest.create(b);
const asset_manifest_file = gen_asset_manifest.getAssetManifest();
var walker = try assetsDir.walk(b.allocator);
defer walker.deinit();
while (try walker.next()) |entry| {
const ext_with_dot = std.fs.path.extension(entry.basename);
if (ext_with_dot.len == 0) continue;
const ext = ext_with_dot[1..];
if (shouldProcessAsset(ext)) {
const run_assetc = b.addRunArtifact(assetc);
run_assetc.rename_step_with_output_arg = false;
gen_asset_manifest.addAssetListFile(run_assetc.captureStdOut());
run_assetc.step.dependOn(install_assetc_step);
run_assetc.addPathDir(b.pathFromRoot("libs/ispc_texcomp/lib"));
if (std.mem.eql(u8, "prog", ext)) {
run_assetc.addArg("-d");
_ = run_assetc.addDepFileOutputArg("depfile.d");
}
// Absolute input file arg, this will add it to step deps, cache and all that good stuff
run_assetc.addFileArg(b.path(b.pathJoin(&.{ path, entry.path })));
// Generated output dir. Output asset(s) will be placed there at the same relative path as input
const result_dir = run_assetc.addOutputFileArg("assets");
run_assetc.setName(b.fmt("assetc ({s})", .{entry.basename}));
const install_assets = b.addInstallDirectory(.{
.source_dir = result_dir,
.install_dir = .prefix,
.install_subdir = path,
});
step.dependOn(&install_assets.step);
}
}
return asset_manifest_file;
}
fn resolveRelativePath(b: *std.Build, from: []const u8, to: []const u8) []const u8 {
return std.fs.path.relative(b.allocator, from, to) catch @panic("Failed to resolve relative path");
}
fn shouldProcessAsset(ext: []const u8) bool {
for (assetc_extensions) |known_ext| {
if (std.mem.eql(u8, known_ext, ext)) {
return true;
}
}
return false;
}
fn buildAssetCompiler(b: *Build, optimize: std.builtin.OptimizeMode, assets_mod: *Build.Module) *Step.Compile {
const assimp_dep = b.dependency("zig-assimp", .{
.target = b.host,
.optimize = optimize,
//.formats = @as([]const u8, "3DS,3MF,AC,AMF,ASE,Assbin,Assjson,Assxml,B3D,Blender,BVH,C4D,COB,Collada,CSM,DXF,FBX,glTF,glTF2,HMP,IFC,Irr,LWO,LWS,M3D,MD2,MD3,MD5,MDC,MDL,MMD,MS3D,NDO,NFF,Obj,OFF,Ogre,OpenGEX,Ply,Q3BSP,Q3D,Raw,SIB,SMD,Step,STEPParser,STL,Terragen,Unreal,X,X3D,XGL"),
.formats = @as([]const u8, "Obj,FBX,glTF,glTF2,Blend"),
});
const mach_dxcompiler_dep = b.dependency("mach_dxcompiler", .{
.target = b.graph.host,
.optimize = optimize,
.from_source = true,
.spirv = true,
.skip_tests = true,
});
const zalgebra_dep = b.dependency("zalgebra", .{});
const spirv_reflect_dep = b.dependency("SPIRV-Reflect", .{
.target = b.host,
.optimize = optimize,
});
const assimp_lib = assimp_dep.artifact("assimp");
const spirv_reflect_lib = spirv_reflect_dep.artifact("spirv-reflect");
const assetc = b.addExecutable(.{
.name = "assetc",
.target = b.host,
.root_source_file = b.path("tools/asset_compiler.zig"),
.optimize = optimize,
});
assetc.linkLibC();
if (b.host.result.os.tag == .windows) {
b.installFile("libs/ispc_texcomp/lib/ispc_texcomp.dll", "ispc_texcomp.dll");
b.installFile("libs/ispc_texcomp/lib/ispc_texcomp.pdb", "ispc_texcomp.pdb");
}
assetc.addLibraryPath(b.path("libs/ispc_texcomp/lib"));
assetc.addIncludePath(b.path("libs/ispc_texcomp/include"));
assetc.linkSystemLibrary("ispc_texcomp");
const zalgebra_mod = zalgebra_dep.module("zalgebra");
const mach_dxcompiler_mod = mach_dxcompiler_dep.module("mach-dxcompiler");
const formats_mod = b.addModule("formats", .{ .root_source_file = b.path("src/formats.zig") });
formats_mod.addImport("zalgebra", zalgebra_mod);
formats_mod.addImport("mach-dxcompiler", mach_dxcompiler_mod);
formats_mod.addImport("assets", assets_mod);
assetc.root_module.addImport("formats", formats_mod);
assetc.root_module.addImport("zalgebra", zalgebra_mod);
assetc.root_module.addImport("assets", assets_mod);
assetc.linkLibrary(assimp_lib);
assetc.linkLibrary(spirv_reflect_lib);
assetc.linkLibC();
assetc.linkLibCpp();
assetc.addCSourceFile(.{ .file = b.path("libs/stb/stb_image.c"), .flags = &.{"-std=c99"} });
assetc.addIncludePath(b.path("libs/stb"));
return assetc;
}