gutter_runner/libs/raylib/easings.odin

223 lines
4.4 KiB
Odin

package raylib
import "core:math"
EaseLinearNone :: proc(t, b, c, d: f32) -> f32 { return (c*t/d + b) }
EaseLinearIn :: proc(t, b, c, d: f32) -> f32 { return (c*t/d + b) }
EaseLinearOut :: proc(t, b, c, d: f32) -> f32 { return (c*t/d + b) }
EaseLinearInOut :: proc(t, b, c, d: f32) -> f32 { return (c*t/d + b) }
// Sine Easing functions
EaseSineIn :: proc(t, b, c, d: f32) -> f32 { return (-c*math.cos(t/d*(PI/2.0)) + c + b) }
EaseSineOut :: proc(t, b, c, d: f32) -> f32 { return (c*math.sin(t/d*(PI/2.0)) + b) }
EaseSineInOut :: proc(t, b, c, d: f32) -> f32 { return (-c/2.0*(math.cos(PI*t/d) - 1.0) + b) }
// Circular Easing functions
EaseCircIn :: proc(t, b, c, d: f32) -> f32 {
t := t
t /= d
return -c*(math.sqrt(1.0 - t*t) - 1.0) + b
}
EaseCircOut :: proc(t, b, c, d: f32) -> f32 {
t := t
t = t/d - 1.0
return c*math.sqrt(1.0 - t*t) + b
}
EaseCircInOut :: proc(t, b, c, d: f32) -> f32 {
t := t
t /= d/2.0
if t < 1.0 {
return -c/2.0*(math.sqrt(1.0 - t*t) - 1.0) + b
}
t -= 2.0
return c/2.0*(math.sqrt(1.0 - t*t) + 1.0) + b
}
// Cubic Easing functions
EaseCubicIn :: proc(t, b, c, d: f32) -> f32 {
t := t
t /= d
return c*t*t*t + b
}
EaseCubicOut :: proc(t, b, c, d: f32) -> f32 {
t := t
t = t/d - 1.0
return c*(t*t*t + 1.0) + b
}
EaseCubicInOut :: proc(t, b, c, d: f32) -> f32 {
t := t
t /= d/2.0
if t < 1.0 {
return c/2.0*t*t*t + b
}
t -= 2.0
return c/2.0*(t*t*t + 2.0) + b
}
// Quadratic Easing functions
EaseQuadIn :: proc(t, b, c, d: f32) -> f32 {
t := t
t /= d
return c*t*t + b
}
EaseQuadOut :: proc(t, b, c, d: f32) -> f32 {
t := t
t /= d
return -c*t*(t - 2.0) + b
}
EaseQuadInOut :: proc(t, b, c, d: f32) -> f32 {
t := t
t /= d/2.0
if t < 1 {
return ((c/2)*(t*t)) + b
}
return -c/2.0*(((t - 1.0)*(t - 3.0)) - 1.0) + b
}
// Exponential Easing functions
EaseExpoIn :: proc(t, b, c, d: f32) -> f32 {
return (t == 0.0) ? b : (c*math.pow(2.0, 10.0*(t/d - 1.0)) + b)
}
EaseExpoOut :: proc(t, b, c, d: f32) -> f32 {
return (t == d) ? (b + c) : (c*(-math.pow(2.0, -10.0*t/d) + 1.0) + b)
}
EaseExpoInOut :: proc(t, b, c, d: f32) -> f32 {
if t == 0.0 {
return b
}
if t == d {
return b + c
}
t := t
t /= d/2.0
if t < 1.0 {
return c/2.0*math.pow(2.0, 10.0*(t - 1.0)) + b
}
return c/2.0*(-math.pow(2.0, -10.0*(t - 1.0)) + 2.0) + b
}
// Back Easing functions
EaseBackIn :: proc(t, b, c, d: f32) -> f32 {
s :: 1.70158
t := t
t /= d
postFix := t
return (c*(postFix)*t*((s + 1.0)*t - s) + b)
}
EaseBackOut :: proc(t, b, c, d: f32) -> f32 {
t := t
s :: 1.70158
t = t/d - 1.0
return (c*(t*t*((s + 1.0)*t + s) + 1.0) + b)
}
EaseBackInOut :: proc(t, b, c, d: f32) -> f32 {
t := t
s := f32(1.70158)
t /= d/2
if t < 1.0 {
s *= 1.525
return (c/2.0*(t*t*((s + 1.0)*t - s)) + b)
}
t -= 2
postFix := t
s *= 1.525
return (c/2.0*((postFix)*t*((s + 1.0)*t + s) + 2.0) + b)
}
// Bounce Easing functions
EaseBounceOut :: proc(t, b, c, d: f32) -> f32 {
t := t
t /= d
switch {
case t < 1.0/2.75:
return (c*(7.5625*t*t) + b)
case t < 2.0/2.75:
t -= 1.5/2.75
postFix := t
return (c*(7.5625*(postFix)*t + 0.75) + b)
case t < 2.5/2.75:
t -= 2.25/2.75
postFix := t
return (c*(7.5625*(postFix)*t + 0.9375) + b)
case:
t -= 2.625/2.75
postFix := t
return (c*(7.5625*(postFix)*t + 0.984375) + b)
}
}
EaseBounceIn :: proc(t, b, c, d: f32) -> f32 {
return c - EaseBounceOut(d - t, 0.0, c, d) + b
}
EaseBounceInOut :: proc(t, b, c, d: f32) -> f32 {
if t < d/2.0 {
return EaseBounceIn(t*2.0, 0.0, c, d)*0.5 + b
} else {
return EaseBounceOut(t*2.0 - d, 0.0, c, d)*0.5 + c*0.5 + b
}
}
// Elastic Easing functions
EaseElasticIn :: proc(t, b, c, d: f32) -> f32 {
if t == 0.0 {
return b
}
t := t
t /= d
if t == 1.0 {
return b + c
}
p := d*0.3
a := c
s := p/4.0
t -= 1
postFix := a*math.pow(2.0, 10.0*t)
return -(postFix*math.sin((t*d-s)*(2.0*PI)/p )) + b
}
EaseElasticOut :: proc(t, b, c, d: f32) -> f32 {
if t == 0.0 {
return b
}
t := t
t /= d
if t == 1.0 {
return b + c
}
p := d*0.3
a := c
s := p/4.0
return a*math.pow(2.0,-10.0*t)*math.sin((t*d-s)*(2.0*PI)/p) + c + b
}
EaseElasticInOut :: proc(t, b, c, d: f32) -> f32 {
if t == 0.0 {
return b
}
t := t
t /= d/2.0
if t == 2.0 {
return b + c
}
p := d*(0.3*1.5)
a := c
s := p/4.0
t -= 1
if t < 1.0 {
postFix := a*math.pow(2.0, 10.0*t)
return -0.5*(postFix*math.sin((t*d-s)*(2.0*PI)/p)) + b
}
postFix := a*math.pow(2.0, -10.0*t)
return (postFix*math.sin((t*d-s)*(2.0*PI)/p)*0.5 + c + b)
}